MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgratr Structured version   Visualization version   GIF version

Theorem cgratr 26612
Description: Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgracom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgratr.h (𝜑𝐻𝑃)
cgratr.i (𝜑𝑈𝑃)
cgratr.j (𝜑𝐽𝑃)
cgratr.1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
Assertion
Ref Expression
cgratr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)

Proof of Theorem cgratr
Dummy variables 𝑥 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2824 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2824 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
8 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
10 cgraid.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
12 simpllr 774 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
13 cgratr.i . . . . . 6 (𝜑𝑈𝑃)
1413ad3antrrr 728 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑈𝑃)
15 simplr 767 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
16 cgraid.i . . . . . 6 𝐼 = (Itv‘𝐺)
17 simprlr 778 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
1817eqcomd 2830 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 26269 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝑈))
20 simprrr 780 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
2120eqcomd 2830 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
225ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
237ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐴𝑃)
249ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐵𝑃)
2511ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐶𝑃)
26 simpllr 774 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢𝑃)
27 cgracom.e . . . . . . . . 9 (𝜑𝐸𝑃)
2827ad6antr 734 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐸𝑃)
29 simplr 767 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣𝑃)
30 simpr1 1190 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩)
311, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp3 26311 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑣(dist‘𝐺)𝑢))
3212ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥𝑃)
3315ad3antrrr 728 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦𝑃)
34 cgraid.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
35 cgracom.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3635ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐷𝑃)
37 cgracom.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3837ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐹𝑃)
3914ad3antrrr 728 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑈𝑃)
40 cgratr.j . . . . . . . . . . 11 (𝜑𝐽𝑃)
4140ad6antr 734 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐽𝑃)
42 cgratr.h . . . . . . . . . . . 12 (𝜑𝐻𝑃)
4342ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐻𝑃)
44 cgratr.1 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
4544ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
46 simprll 777 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝑈)𝐻)
4746ad3antrrr 728 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥(𝐾𝑈)𝐻)
481, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47cgrahl1 26605 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝐽”⟩)
49 simprrl 779 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝑈)𝐽)
5049ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦(𝐾𝑈)𝐽)
511, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50cgrahl2 26606 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝑦”⟩)
52 simpr2 1191 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢(𝐾𝐸)𝐷)
53 simpr3 1192 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣(𝐾𝐸)𝐹)
541, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp1 26309 . . . . . . . . . . . 12 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐴(dist‘𝐺)𝐵) = (𝑢(dist‘𝐺)𝐸))
5554eqcomd 2830 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝐸) = (𝐴(dist‘𝐺)𝐵))
561, 2, 16, 22, 26, 28, 23, 24, 55tgcgrcomlr 26269 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝐵(dist‘𝐺)𝐴))
5718ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
5856, 57eqtrd 2859 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝑈(dist‘𝐺)𝑥))
591, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp2 26310 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝑣))
6021ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
6159, 60eqtr3d 2861 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝑈(dist‘𝐺)𝑦))
621, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 61cgracgr 26607 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝑣) = (𝑥(dist‘𝐺)𝑦))
631, 2, 16, 22, 26, 29, 32, 33, 62tgcgrcomlr 26269 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑣(dist‘𝐺)𝑢) = (𝑦(dist‘𝐺)𝑥))
6431, 63eqtrd 2859 . . . . . 6 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
65 cgracom.1 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
661, 16, 34, 4, 6, 8, 10, 35, 27, 37iscgra 26598 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)))
6765, 66mpbid 234 . . . . . . 7 (𝜑 → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
6867ad3antrrr 728 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
6964, 68r19.29vva 3339 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
701, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 69trgcgr 26305 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩)
7170, 46, 493jca 1124 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
721, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane3 26603 . . . . . 6 (𝜑𝑈𝐻)
7372necomd 3074 . . . . 5 (𝜑𝐻𝑈)
741, 16, 34, 4, 6, 8, 10, 35, 27, 37, 65cgrane1 26601 . . . . . 6 (𝜑𝐴𝐵)
7574necomd 3074 . . . . 5 (𝜑𝐵𝐴)
761, 16, 34, 13, 8, 6, 4, 42, 2, 73, 75hlcgrex 26405 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
771, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane4 26604 . . . . . 6 (𝜑𝑈𝐽)
7877necomd 3074 . . . . 5 (𝜑𝐽𝑈)
791, 16, 34, 4, 6, 8, 10, 35, 27, 37, 65cgrane2 26602 . . . . 5 (𝜑𝐵𝐶)
801, 16, 34, 13, 8, 10, 4, 40, 2, 78, 79hlcgrex 26405 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
81 reeanv 3370 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8276, 80, 81sylanbrc 585 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8371, 82reximddv2 3281 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
841, 16, 34, 4, 6, 8, 10, 42, 13, 40iscgra 26598 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽)))
8583, 84mpbird 259 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  ⟨“cs3 14207  Basecbs 16486  distcds 16577  TarskiGcstrkg 26219  Itvcitv 26225  cgrGccgrg 26299  hlGchlg 26389  cgrAccgra 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26237  df-trkgb 26238  df-trkgcb 26239  df-trkg 26242  df-cgrg 26300  df-leg 26372  df-hlg 26390  df-cgra 26597
This theorem is referenced by:  cgraswaplr  26614  sacgr  26620  oacgr  26621  tgasa1  26647
  Copyright terms: Public domain W3C validator