HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chcompl Structured version   Visualization version   GIF version

Theorem chcompl 27969
Description: Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
chcompl ((𝐻C𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥𝐻 𝐹𝑣 𝑥)
Distinct variable groups:   𝑥,𝐻   𝑥,𝐹

Proof of Theorem chcompl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 isch3 27968 . . . 4 (𝐻C ↔ (𝐻S ∧ ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥)))
21simprbi 480 . . 3 (𝐻C → ∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥))
3 feq1 5988 . . . . 5 (𝑓 = 𝐹 → (𝑓:ℕ⟶𝐻𝐹:ℕ⟶𝐻))
4 breq1 4621 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑣 𝑥𝐹𝑣 𝑥))
54rexbidv 3046 . . . . 5 (𝑓 = 𝐹 → (∃𝑥𝐻 𝑓𝑣 𝑥 ↔ ∃𝑥𝐻 𝐹𝑣 𝑥))
63, 5imbi12d 334 . . . 4 (𝑓 = 𝐹 → ((𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) ↔ (𝐹:ℕ⟶𝐻 → ∃𝑥𝐻 𝐹𝑣 𝑥)))
76rspccv 3295 . . 3 (∀𝑓 ∈ Cauchy (𝑓:ℕ⟶𝐻 → ∃𝑥𝐻 𝑓𝑣 𝑥) → (𝐹 ∈ Cauchy → (𝐹:ℕ⟶𝐻 → ∃𝑥𝐻 𝐹𝑣 𝑥)))
82, 7syl 17 . 2 (𝐻C → (𝐹 ∈ Cauchy → (𝐹:ℕ⟶𝐻 → ∃𝑥𝐻 𝐹𝑣 𝑥)))
983imp 1254 1 ((𝐻C𝐹 ∈ Cauchy ∧ 𝐹:ℕ⟶𝐻) → ∃𝑥𝐻 𝐹𝑣 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4618  wf 5848  cn 10972  Cauchyccau 27653  𝑣 chli 27654   S csh 27655   C cch 27656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968  ax-hilex 27726  ax-hfvadd 27727  ax-hvcom 27728  ax-hvass 27729  ax-hv0cl 27730  ax-hvaddid 27731  ax-hfvmul 27732  ax-hvmulid 27733  ax-hvmulass 27734  ax-hvdistr1 27735  ax-hvdistr2 27736  ax-hvmul0 27737  ax-hfi 27806  ax-his1 27809  ax-his2 27810  ax-his3 27811  ax-his4 27812  ax-hcompl 27929
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-icc 12132  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-lm 20956  df-haus 21042  df-cau 22977  df-grpo 27217  df-gid 27218  df-ginv 27219  df-gdiv 27220  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-vs 27324  df-nmcv 27325  df-ims 27326  df-hnorm 27695  df-hvsub 27698  df-hlim 27699  df-hcau 27700  df-ch 27948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator