MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   GIF version

Theorem chebbnd2 26045
Description: The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 7183 . . . . 5 (⊤ → (2[,)+∞) ∈ V)
2 ovexd 7183 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / 𝑥) ∈ V)
3 ovexd 7183 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ V)
4 eqidd 2820 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) = (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)))
5 simpr 487 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
6 2re 11703 . . . . . . . . . . 11 2 ∈ ℝ
7 elicopnf 12825 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
86, 7ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
95, 8sylib 220 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
10 chtrpcl 25744 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
119, 10syl 17 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
1211rpcnne0d 12432 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
13 ppinncl 25743 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
149, 13syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
1514nnrpd 12421 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
169simpld 497 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
17 1red 10634 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
186a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
19 1lt2 11800 . . . . . . . . . . . 12 1 < 2
2019a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 2)
219simprd 498 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
2217, 18, 16, 20, 21ltletrd 10792 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
2316, 22rplogcld 25204 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
2415, 23rpmulcld 12439 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
2524rpcnne0d 12432 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0))
26 recdiv 11338 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (((π𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((π𝑥) · (log‘𝑥)) ≠ 0)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2712, 25, 26syl2anc 586 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) = (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))
2827mpteq2dva 5152 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) = (𝑥 ∈ (2[,)+∞) ↦ (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))))
291, 2, 3, 4, 28offval2 7418 . . . 4 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))))
30 0red 10636 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
31 2pos 11732 . . . . . . . . . . 11 0 < 2
3231a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 2)
3330, 18, 16, 32, 21ltletrd 10792 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
3416, 33elrpd 12420 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
3534rpcnne0d 12432 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
3624rpcnd 12425 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
37 dmdcan 11342 . . . . . . 7 ((((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((π𝑥) · (log‘𝑥)) ∈ ℂ) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3812, 35, 36, 37syl3anc 1366 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
3915rpcnd 12425 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℂ)
4023rpcnne0d 12432 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
41 divdiv2 11344 . . . . . . 7 (((π𝑥) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4239, 35, 40, 41syl3anc 1366 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((π𝑥) / (𝑥 / (log‘𝑥))) = (((π𝑥) · (log‘𝑥)) / 𝑥))
4338, 42eqtr4d 2857 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
4443mpteq2dva 5152 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((θ‘𝑥) / 𝑥) · (((π𝑥) · (log‘𝑥)) / (θ‘𝑥)))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4529, 44eqtrd 2854 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) = (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))))
4634ex 415 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
4746ssrdv 3971 . . . . 5 (⊤ → (2[,)+∞) ⊆ ℝ+)
48 chto1ub 26044 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
4948a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
5047, 49o1res2 14912 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
51 ax-1cn 10587 . . . . . . 7 1 ∈ ℂ
5251a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5311, 24rpdivcld 12440 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ+)
5453rpcnd 12425 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
55 pnfxr 10687 . . . . . . . . 9 +∞ ∈ ℝ*
56 icossre 12809 . . . . . . . . 9 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
576, 55, 56mp2an 690 . . . . . . . 8 (2[,)+∞) ⊆ ℝ
58 rlimconst 14893 . . . . . . . 8 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
5957, 51, 58mp2an 690 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1
6059a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
61 chtppilim 26043 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
6261a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
63 ax-1ne0 10598 . . . . . . 7 1 ≠ 0
6463a1i 11 . . . . . 6 (⊤ → 1 ≠ 0)
6553rpne0d 12428 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≠ 0)
6652, 54, 60, 62, 64, 65rlimdiv 14994 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1))
67 rlimo1 14965 . . . . 5 ((𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ⇝𝑟 (1 / 1) → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
6866, 67syl 17 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1))
69 o1mul 14963 . . . 4 (((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))))) ∈ 𝑂(1)) → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7050, 68, 69syl2anc 586 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / 𝑥)) ∘f · (𝑥 ∈ (2[,)+∞) ↦ (1 / ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))) ∈ 𝑂(1))
7145, 70eqeltrrd 2912 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1))
7271mptru 1538 1 (𝑥 ∈ (2[,)+∞) ↦ ((π𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1531  wtru 1532  wcel 2108  wne 3014  Vcvv 3493  wss 3934   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  f cof 7399  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668   / cdiv 11289  cn 11630  2c2 11684  +crp 12381  [,)cico 12732  𝑟 crli 14834  𝑂(1)co1 14835  logclog 25130  θccht 25660  πcppi 25663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-cxp 25133  df-cht 25666  df-ppi 25669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator