Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfisfcpmat Structured version   Visualization version   GIF version

Theorem chfacfisfcpmat 20708
 Description: The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfisfcpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
chfacfisfcpmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0𝑆)
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑆(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfisfcpmat
StepHypRef Expression
1 chfacfisfcpmat.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 chfacfisf.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 chfacfisf.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
41, 2, 3cpmatsubgpmat 20573 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝑌))
543adant3 1101 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑆 ∈ (SubGrp‘𝑌))
65adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑆 ∈ (SubGrp‘𝑌))
7 subgsubm 17663 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝑌) → 𝑆 ∈ (SubMnd‘𝑌))
8 chfacfisf.0 . . . . . . . 8 0 = (0g𝑌)
98subm0cl 17399 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝑌) → 0𝑆)
105, 7, 93syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0𝑆)
1110adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 0𝑆)
121, 2, 3cpmatsrgpmat 20574 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝑌))
13123adant3 1101 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑆 ∈ (SubRing‘𝑌))
1413adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑆 ∈ (SubRing‘𝑌))
15 chfacfisf.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chfacfisf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
17 chfacfisf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
181, 15, 16, 17m2cpm 20594 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝑆)
1918adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇𝑀) ∈ 𝑆)
20 3simpa 1078 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21 elmapi 7921 . . . . . . . . . . 11 (𝑏 ∈ (𝐵𝑚 (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
2221adantl 481 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
23 nnnn0 11337 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
24 nn0uz 11760 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2523, 24syl6eleq 2740 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
26 eluzfz1 12386 . . . . . . . . . . . 12 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
2725, 26syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
2827adantr 480 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 0 ∈ (0...𝑠))
2922, 28ffvelrnd 6400 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
3020, 29anim12i 589 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
31 df-3an 1056 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
3230, 31sylibr 224 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵))
331, 15, 16, 17m2cpm 20594 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ 𝑆)
3432, 33syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ 𝑆)
35 chfacfisf.r . . . . . . 7 × = (.r𝑌)
3635subrgmcl 18840 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏‘0)) ∈ 𝑆) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆)
3714, 19, 34, 36syl3anc 1366 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆)
38 chfacfisf.s . . . . . 6 = (-g𝑌)
3938subgsubcl 17652 . . . . 5 ((𝑆 ∈ (SubGrp‘𝑌) ∧ 0𝑆 ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
406, 11, 37, 39syl3anc 1366 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
4140ad2antrr 762 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
42 simpl1 1084 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑁 ∈ Fin)
43 simpl2 1085 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑅 ∈ Ring)
4422adantl 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
45 eluzfz2 12387 . . . . . . . . . 10 (𝑠 ∈ (ℤ‘0) → 𝑠 ∈ (0...𝑠))
4625, 45syl 17 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
4746ad2antrl 764 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
4844, 47ffvelrnd 6400 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
491, 15, 16, 17m2cpm 20594 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5042, 43, 48, 49syl3anc 1366 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5150adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5251ad2antrr 762 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5311ad4antr 769 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0𝑆)
54 nn0re 11339 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
5554adantl 481 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
56 peano2nn 11070 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
5756nnred 11073 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
5955, 58lenltd 10221 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) ↔ ¬ (𝑠 + 1) < 𝑛))
60 nesym 2879 . . . . . . . . . . . . . . . 16 ((𝑠 + 1) ≠ 𝑛 ↔ ¬ 𝑛 = (𝑠 + 1))
61 ltlen 10176 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6254, 57, 61syl2anr 494 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6362biimprd 238 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛) → 𝑛 < (𝑠 + 1)))
6463expcomd 453 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑠 + 1) ≠ 𝑛 → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6560, 64syl5bir 233 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = (𝑠 + 1) → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6665com23 86 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6759, 66sylbird 250 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ (𝑠 + 1) < 𝑛 → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6867com23 86 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = (𝑠 + 1) → (¬ (𝑠 + 1) < 𝑛𝑛 < (𝑠 + 1))))
6968impd 446 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
7069ex 449 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7170ad2antrl 764 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7271imp 444 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
7372adantr 480 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
745ad4antr 769 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubGrp‘𝑌))
7520ad4antr 769 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7622ad4antlr 771 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
77 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → 𝑛 = 0)
7877necon3bi 2849 . . . . . . . . . . . . . . . . . 18 𝑛 = 0 → 𝑛 ≠ 0)
7978anim2i 592 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 ∈ ℕ0𝑛 ≠ 0))
80 elnnne0 11344 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8179, 80sylibr 224 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
82 nnm1nn0 11372 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8381, 82syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
8483adantll 750 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
8584adantr 480 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ ℕ0)
8623adantr 480 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0)
8786ad4antlr 771 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
8862simprbda 652 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ (𝑠 + 1))
8955adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℝ)
90 1red 10093 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 1 ∈ ℝ)
91 nnre 11065 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
9291ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℝ)
9389, 90, 92lesubaddd 10662 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑛 − 1) ≤ 𝑠𝑛 ≤ (𝑠 + 1)))
9488, 93mpbird 247 . . . . . . . . . . . . . . . . . 18 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
9594exp31 629 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9695ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9796imp 444 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9897adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9998imp 444 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
100 elfz2nn0 12469 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (0...𝑠) ↔ ((𝑛 − 1) ∈ ℕ0𝑠 ∈ ℕ0 ∧ (𝑛 − 1) ≤ 𝑠))
10185, 87, 99, 100syl3anbrc 1265 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ (0...𝑠))
10276, 101ffvelrnd 6400 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘(𝑛 − 1)) ∈ 𝐵)
103 df-3an 1056 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10475, 102, 103sylanbrc 699 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
1051, 15, 16, 17m2cpm 20594 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆)
106104, 105syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆)
10714ad2antrr 762 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubRing‘𝑌))
10819ad2antrr 762 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇𝑀) ∈ 𝑆)
10920, 86anim12i 589 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
110 df-3an 1056 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
111109, 110sylibr 224 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
112111ad2antrr 762 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
113112simp1d 1093 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑁 ∈ Fin)
114112simp2d 1094 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑅 ∈ Ring)
11544ad2antrr 762 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
116 simplr 807 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℕ0)
11723ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
118 nn0z 11438 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
119 nnz 11437 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
120 zleltp1 11466 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑛𝑠𝑛 < (𝑠 + 1)))
121118, 119, 120syl2anr 494 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛𝑠𝑛 < (𝑠 + 1)))
122121biimpar 501 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛𝑠)
123 elfz2nn0 12469 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...𝑠) ↔ (𝑛 ∈ ℕ0𝑠 ∈ ℕ0𝑛𝑠))
124116, 117, 122, 123syl3anbrc 1265 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
125124exp31 629 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
126125ad2antrl 764 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
127126imp31 447 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
128115, 127ffvelrnd 6400 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏𝑛) ∈ 𝐵)
1291, 15, 16, 17m2cpm 20594 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑛) ∈ 𝐵) → (𝑇‘(𝑏𝑛)) ∈ 𝑆)
130113, 114, 128, 129syl3anc 1366 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏𝑛)) ∈ 𝑆)
13135subrgmcl 18840 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏𝑛)) ∈ 𝑆) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
132107, 108, 130, 131syl3anc 1366 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
133132adantlr 751 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
13438subgsubcl 17652 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝑌) ∧ (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆 ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
13574, 106, 133, 134syl3anc 1366 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
136135ex 449 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆))
13773, 136syld 47 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆))
138137impl 649 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
13953, 138ifclda 4153 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) ∈ 𝑆)
14052, 139ifclda 4153 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) ∈ 𝑆)
14141, 140ifclda 4153 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) ∈ 𝑆)
142 chfacfisf.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
143141, 142fmptd 6425 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵𝑚 (0...𝑠)))) → 𝐺:ℕ0𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  Fincfn 7997  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364  Basecbs 15904  .rcmulr 15989  0gc0g 16147  SubMndcsubmnd 17381  -gcsg 17471  SubGrpcsubg 17635  Ringcrg 18593  SubRingcsubrg 18824  Poly1cpl1 19595   Mat cmat 20261   ConstPolyMat ccpmat 20556   matToPolyMat cmat2pmat 20557 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-coe1 19601  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-cpmat 20559  df-mat2pmat 20560 This theorem is referenced by:  cpmadumatpolylem1  20734  cpmadumatpolylem2  20735  cpmadumatpoly  20736  chcoeffeqlem  20738  cayhamlem4  20741
 Copyright terms: Public domain W3C validator