MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfscmulgsum Structured version   Visualization version   GIF version

Theorem chfacfscmulgsum 21467
Description: Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfscmulcl.x 𝑋 = (var1𝑅)
chfacfscmulcl.m · = ( ·𝑠𝑌)
chfacfscmulcl.e = (.g‘(mulGrp‘𝑃))
chfacfscmulgsum.p + = (+g𝑌)
Assertion
Ref Expression
chfacfscmulgsum (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠,𝐵   0 ,𝑛   𝐵,𝑖,𝑠   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   ,𝑖   · ,𝑏,𝑖   𝑇,𝑛   ,𝑛   × ,𝑛   𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖,𝑛,𝑠,𝑏)   𝐵(𝑏)   𝑃(𝑖,𝑛,𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑛,𝑠)   × (𝑖,𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑛,𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem chfacfscmulgsum
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝑌) = (Base‘𝑌)
2 chfacfisf.0 . . 3 0 = (0g𝑌)
3 chfacfscmulgsum.p . . 3 + = (+g𝑌)
4 crngring 19307 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54anim2i 618 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
653adant3 1128 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7 chfacfisf.p . . . . . . 7 𝑃 = (Poly1𝑅)
8 chfacfisf.y . . . . . . 7 𝑌 = (𝑁 Mat 𝑃)
97, 8pmatring 21300 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
106, 9syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
11 ringcmn 19330 . . . . 5 (𝑌 ∈ Ring → 𝑌 ∈ CMnd)
1210, 11syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ CMnd)
1312adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ CMnd)
14 nn0ex 11902 . . . 4 0 ∈ V
1514a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 ∈ V)
16 simpll 765 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
17 simplr 767 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
18 simpr 487 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
1916, 17, 183jca 1124 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
20 chfacfisf.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21 chfacfisf.b . . . . 5 𝐵 = (Base‘𝐴)
22 chfacfisf.r . . . . 5 × = (.r𝑌)
23 chfacfisf.s . . . . 5 = (-g𝑌)
24 chfacfisf.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chfacfisf.g . . . . 5 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
26 chfacfscmulcl.x . . . . 5 𝑋 = (var1𝑅)
27 chfacfscmulcl.m . . . . 5 · = ( ·𝑠𝑌)
28 chfacfscmulcl.e . . . . 5 = (.g‘(mulGrp‘𝑃))
2920, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 21464 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3019, 29syl 17 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
3120, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulfsupp 21466 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))) finSupp 0 )
32 nn0disj 13022 . . . 4 ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅
3332a1i 11 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0...(𝑠 + 1)) ∩ (ℤ‘((𝑠 + 1) + 1))) = ∅)
34 nnnn0 11903 . . . . . 6 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
35 peano2nn0 11936 . . . . . 6 (𝑠 ∈ ℕ0 → (𝑠 + 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ0)
37 nn0split 13021 . . . . 5 ((𝑠 + 1) ∈ ℕ0 → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3836, 37syl 17 . . . 4 (𝑠 ∈ ℕ → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
3938ad2antrl 726 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ℕ0 = ((0...(𝑠 + 1)) ∪ (ℤ‘((𝑠 + 1) + 1))))
401, 2, 3, 13, 15, 30, 31, 33, 39gsumsplit2 19048 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
41 simpll 765 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
42 simplr 767 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
43 nncn 11645 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℂ)
44 add1p1 11887 . . . . . . . . . . . . 13 (𝑠 ∈ ℂ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4543, 44syl 17 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → ((𝑠 + 1) + 1) = (𝑠 + 2))
4645ad2antrl 726 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑠 + 1) + 1) = (𝑠 + 2))
4746fveq2d 6673 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (ℤ‘((𝑠 + 1) + 1)) = (ℤ‘(𝑠 + 2)))
4847eleq2d 2898 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↔ 𝑖 ∈ (ℤ‘(𝑠 + 2))))
4948biimpa 479 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → 𝑖 ∈ (ℤ‘(𝑠 + 2)))
5020, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmul0 21465 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (ℤ‘(𝑠 + 2))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5141, 42, 49, 50syl3anc 1367 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (ℤ‘((𝑠 + 1) + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) = 0 )
5251mpteq2dva 5160 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 ))
5352oveq2d 7171 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )))
544, 9sylan2 594 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
55 ringmnd 19305 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑌 ∈ Mnd)
5654, 55syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Mnd)
57563adant3 1128 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Mnd)
58 fvex 6682 . . . . . . . 8 (ℤ‘((𝑠 + 1) + 1)) ∈ V
5957, 58jctir 523 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
6059adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V))
612gsumz 17999 . . . . . 6 ((𝑌 ∈ Mnd ∧ (ℤ‘((𝑠 + 1) + 1)) ∈ V) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6260, 61syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ 0 )) = 0 )
6353, 62eqtrd 2856 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = 0 )
6463oveq2d 7171 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ))
65 fzfid 13340 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0...(𝑠 + 1)) ∈ Fin)
66 elfznn0 12999 . . . . . . . 8 (𝑖 ∈ (0...(𝑠 + 1)) → 𝑖 ∈ ℕ0)
6766, 19sylan2 594 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ ℕ0))
6867, 29syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 + 1))) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
6968ralrimiva 3182 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 + 1))((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
701, 13, 65, 69gsummptcl 19086 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
711, 3, 2mndrid 17931 . . . 4 ((𝑌 ∈ Mnd ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7257, 70, 71syl2an2r 683 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + 0 ) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7364, 72eqtrd 2856 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ (ℤ‘((𝑠 + 1) + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
7434ad2antrl 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
751, 3, 13, 74, 68gsummptfzsplit 19051 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
76 elfznn0 12999 . . . . . . 7 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
7776, 30sylan2 594 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
781, 3, 13, 74, 77gsummptfzsplitl 19052 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
7957adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Mnd)
80 0nn0 11911 . . . . . . . 8 0 ∈ ℕ0
8180a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ ℕ0)
8220, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 21464 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 0 ∈ ℕ0) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
8381, 82mpd3an3 1458 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌))
84 oveq1 7162 . . . . . . . . 9 (𝑖 = 0 → (𝑖 𝑋) = (0 𝑋))
85 fveq2 6669 . . . . . . . . 9 (𝑖 = 0 → (𝐺𝑖) = (𝐺‘0))
8684, 85oveq12d 7173 . . . . . . . 8 (𝑖 = 0 → ((𝑖 𝑋) · (𝐺𝑖)) = ((0 𝑋) · (𝐺‘0)))
871, 86gsumsn 19073 . . . . . . 7 ((𝑌 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8879, 81, 83, 87syl3anc 1367 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((0 𝑋) · (𝐺‘0)))
8988oveq2d 7171 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
9078, 89eqtrd 2856 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))))
91 ovexd 7190 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ V)
92 1nn0 11912 . . . . . . . 8 1 ∈ ℕ0
9392a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 1 ∈ ℕ0)
9474, 93nn0addcld 11958 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
9520, 21, 7, 8, 22, 23, 2, 24, 25, 26, 27, 28chfacfscmulcl 21464 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ (𝑠 + 1) ∈ ℕ0) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
9694, 95mpd3an3 1458 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))
97 oveq1 7162 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝑖 𝑋) = ((𝑠 + 1) 𝑋))
98 fveq2 6669 . . . . . . 7 (𝑖 = (𝑠 + 1) → (𝐺𝑖) = (𝐺‘(𝑠 + 1)))
9997, 98oveq12d 7173 . . . . . 6 (𝑖 = (𝑠 + 1) → ((𝑖 𝑋) · (𝐺𝑖)) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
1001, 99gsumsn 19073 . . . . 5 ((𝑌 ∈ Mnd ∧ (𝑠 + 1) ∈ V ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10179, 91, 96, 100syl3anc 1367 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))
10290, 101oveq12d 7173 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (𝑌 Σg (𝑖 ∈ {(𝑠 + 1)} ↦ ((𝑖 𝑋) · (𝐺𝑖))))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))))
103 fzfid 13340 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (1...𝑠) ∈ Fin)
104 simpll 765 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
105 simplr 767 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))))
106 elfznn 12935 . . . . . . . . . 10 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ)
107106nnnn0d 11954 . . . . . . . . 9 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0)
108107adantl 484 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0)
109104, 105, 108, 29syl3anc 1367 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
110109ralrimiva 3182 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 𝑋) · (𝐺𝑖)) ∈ (Base‘𝑌))
1111, 13, 103, 110gsummptcl 19086 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌))
1121, 3mndass 17919 . . . . 5 ((𝑌 ∈ Mnd ∧ ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) ∈ (Base‘𝑌) ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
11379, 111, 83, 96, 112syl13anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))))
114106nnne0d 11686 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ 0)
115114ad2antlr 725 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ 0)
116 neeq1 3078 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
117116adantl 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ 0 ↔ 𝑖 ≠ 0))
118115, 117mpbird 259 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ 0)
119 eqneqall 3027 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑛 ≠ 0 → 0 = (𝑇‘(𝑏‘(𝑖 − 1)))))
120118, 119mpan9 509 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = (𝑇‘(𝑏‘(𝑖 − 1))))
121 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 𝑛 = 𝑖)
122 eqeq1 2825 . . . . . . . . . . . . . . . . 17 (0 = 𝑛 → (0 = 𝑖𝑛 = 𝑖))
123122eqcoms 2829 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → (0 = 𝑖𝑛 = 𝑖))
124123adantl 484 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (0 = 𝑖𝑛 = 𝑖))
125121, 124mpbird 259 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → 0 = 𝑖)
126125fveq2d 6673 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑏‘0) = (𝑏𝑖))
127126fveq2d 6673 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → (𝑇‘(𝑏‘0)) = (𝑇‘(𝑏𝑖)))
128127oveq2d 7171 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
129120, 128oveq12d 7173 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
130 elfz2 12898 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) ↔ ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)))
131 zleltp1 12032 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
132131ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
1331323adant1 1126 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖𝑠𝑖 < (𝑠 + 1)))
134133biimpcd 251 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑠 → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
135134adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 𝑖𝑖𝑠) → ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 < (𝑠 + 1)))
136135impcom 410 . . . . . . . . . . . . . . . . . . . 20 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 < (𝑠 + 1))
137136orcd 869 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖))
138 zre 11984 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 𝑠 ∈ ℝ)
139 1red 10641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℤ → 1 ∈ ℝ)
140138, 139readdcld 10669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ℤ → (𝑠 + 1) ∈ ℝ)
141 zre 11984 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
142140, 141anim12ci 615 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
1431423adant1 1126 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ))
144 lttri2 10722 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
145143, 144syl 17 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
146145adantr 483 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → (𝑖 ≠ (𝑠 + 1) ↔ (𝑖 < (𝑠 + 1) ∨ (𝑠 + 1) < 𝑖)))
147137, 146mpbird 259 . . . . . . . . . . . . . . . . . 18 (((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖𝑠)) → 𝑖 ≠ (𝑠 + 1))
148130, 147sylbi 219 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...𝑠) → 𝑖 ≠ (𝑠 + 1))
149148ad2antlr 725 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 ≠ (𝑠 + 1))
150 neeq1 3078 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
151150adantl 484 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 ≠ (𝑠 + 1) ↔ 𝑖 ≠ (𝑠 + 1)))
152149, 151mpbird 259 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ≠ (𝑠 + 1))
153152adantr 483 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → 𝑛 ≠ (𝑠 + 1))
154153neneqd 3021 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → ¬ 𝑛 = (𝑠 + 1))
155154pm2.21d 121 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → (𝑛 = (𝑠 + 1) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
156155imp 409 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
157106nnred 11652 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℝ)
158 eleq1w 2895 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ))
159157, 158syl5ibrcom 249 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → (𝑛 = 𝑖𝑛 ∈ ℝ))
160159adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑛 = 𝑖𝑛 ∈ ℝ))
161160imp 409 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 ∈ ℝ)
16274nn0red 11955 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℝ)
163162ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑠 ∈ ℝ)
164 1red 10641 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 1 ∈ ℝ)
165163, 164readdcld 10669 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑠 + 1) ∈ ℝ)
166130, 136sylbi 219 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑠) → 𝑖 < (𝑠 + 1))
167166ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑖 < (𝑠 + 1))
168 breq1 5068 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑖 → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
169168adantl 484 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → (𝑛 < (𝑠 + 1) ↔ 𝑖 < (𝑠 + 1)))
170167, 169mpbird 259 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → 𝑛 < (𝑠 + 1))
171161, 165, 170ltnsymd 10788 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ¬ (𝑠 + 1) < 𝑛)
172171pm2.21d 121 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
173172ad2antrr 724 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → ((𝑠 + 1) < 𝑛0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
174173imp 409 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
175 simp-4r 782 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 = 𝑖)
176175fvoveq1d 7177 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏‘(𝑛 − 1)) = (𝑏‘(𝑖 − 1)))
177176fveq2d 6673 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏‘(𝑛 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1))))
178175fveq2d 6673 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑏𝑛) = (𝑏𝑖))
179178fveq2d 6673 . . . . . . . . . . . . . 14 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → (𝑇‘(𝑏𝑛)) = (𝑇‘(𝑏𝑖)))
180179oveq2d 7171 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) = ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))
181177, 180oveq12d 7173 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
182174, 181ifeqda 4501 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
183156, 182ifeqda 4501 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
184129, 183ifeqda 4501 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) ∧ 𝑛 = 𝑖) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
185 ovexd 7190 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))) ∈ V)
18625, 184, 108, 185fvmptd2 6775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝐺𝑖) = ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
187186oveq2d 7171 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 𝑋) · (𝐺𝑖)) = ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
188187mpteq2dva 5160 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
189188oveq2d 7171 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))))
190 nn0p1gt0 11925 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ0 → 0 < (𝑠 + 1))
191 0red 10643 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → 0 ∈ ℝ)
192 ltne 10736 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
193191, 192sylan 582 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑠 + 1) ≠ 0)
194 neeq1 3078 . . . . . . . . . . . . . . 15 (𝑛 = (𝑠 + 1) → (𝑛 ≠ 0 ↔ (𝑠 + 1) ≠ 0))
195193, 194syl5ibrcom 249 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ0 ∧ 0 < (𝑠 + 1)) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
19634, 190, 195syl2anc2 587 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
197196ad2antrl 726 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 = (𝑠 + 1) → 𝑛 ≠ 0))
198197imp 409 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → 𝑛 ≠ 0)
199 eqneqall 3027 . . . . . . . . . . 11 (𝑛 = 0 → (𝑛 ≠ 0 → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠))))
200198, 199mpan9 509 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = (𝑇‘(𝑏𝑠)))
201 iftrue 4472 . . . . . . . . . . 11 (𝑛 = (𝑠 + 1) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
202201ad2antlr 725 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) = (𝑇‘(𝑏𝑠)))
203200, 202ifeqda 4501 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 = (𝑠 + 1)) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = (𝑇‘(𝑏𝑠)))
20474, 35syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑠 + 1) ∈ ℕ0)
205 fvexd 6684 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ V)
20625, 203, 204, 205fvmptd2 6775 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘(𝑠 + 1)) = (𝑇‘(𝑏𝑠)))
207206oveq2d 7171 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) = (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))))
20843ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
209 eqid 2821 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
21026, 7, 209vr1cl 20384 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
211208, 210syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
212 eqid 2821 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
213212, 209mgpbas 19244 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
214 eqid 2821 . . . . . . . . . . . . . 14 (1r𝑃) = (1r𝑃)
215212, 214ringidval 19252 . . . . . . . . . . . . 13 (1r𝑃) = (0g‘(mulGrp‘𝑃))
216213, 215, 28mulg0 18230 . . . . . . . . . . . 12 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
217211, 216syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r𝑃))
2187ply1crng 20365 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
219218anim2i 618 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2202193adant3 1128 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
2218matsca2 21028 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
222220, 221syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
223222fveq2d 6673 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1r𝑃) = (1r‘(Scalar‘𝑌)))
224217, 223eqtrd 2856 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
225224adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (0 𝑋) = (1r‘(Scalar‘𝑌)))
226225oveq1d 7170 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ((1r‘(Scalar‘𝑌)) · (𝐺‘0)))
2277, 8pmatlmod 21301 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2284, 227sylan2 594 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
2292283adant3 1128 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
23020, 21, 7, 8, 22, 23, 2, 24, 25chfacfisf 21461 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
2314, 230syl3anl2 1409 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
232231, 81ffvelrnd 6851 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) ∈ (Base‘𝑌))
233 eqid 2821 . . . . . . . . . 10 (Scalar‘𝑌) = (Scalar‘𝑌)
234 eqid 2821 . . . . . . . . . 10 (1r‘(Scalar‘𝑌)) = (1r‘(Scalar‘𝑌))
2351, 233, 27, 234lmodvs1 19661 . . . . . . . . 9 ((𝑌 ∈ LMod ∧ (𝐺‘0) ∈ (Base‘𝑌)) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
236229, 232, 235syl2an2r 683 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((1r‘(Scalar‘𝑌)) · (𝐺‘0)) = (𝐺‘0))
237 iftrue 4472 . . . . . . . . 9 (𝑛 = 0 → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
238 ovexd 7190 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ V)
23925, 237, 81, 238fvmptd3 6790 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐺‘0) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
240226, 236, 2393eqtrd 2860 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((0 𝑋) · (𝐺‘0)) = ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
241207, 240oveq12d 7173 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
2421, 3cmncom 18922 . . . . . . 7 ((𝑌 ∈ CMnd ∧ ((0 𝑋) · (𝐺‘0)) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) ∈ (Base‘𝑌)) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
24313, 83, 96, 242syl3anc 1367 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))) + ((0 𝑋) · (𝐺‘0))))
244 ringgrp 19301 . . . . . . . . 9 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
24510, 244syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
246245adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
247207, 96eqeltrrd 2914 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌))
24810adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
24924, 20, 21, 7, 8mat2pmatbas 21333 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2504, 249syl3an2 1160 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
251250adantr 483 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
252 simpl1 1187 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
253208adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
254 elmapi 8427 . . . . . . . . . . . 12 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
255254adantl 484 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
256255adantl 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
257 0elfz 13003 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → 0 ∈ (0...𝑠))
25834, 257syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
259258ad2antrl 726 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (0...𝑠))
260256, 259ffvelrnd 6851 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏‘0) ∈ 𝐵)
26124, 20, 21, 7, 8mat2pmatbas 21333 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
262252, 253, 260, 261syl3anc 1367 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
2631, 22ringcl 19310 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
264248, 251, 262, 263syl3anc 1367 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
2651, 2, 23, 3grpsubadd0sub 18185 . . . . . . 7 ((𝑌 ∈ Grp ∧ (((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
266246, 247, 264, 265syl3anc 1367 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) + ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
267241, 243, 2663eqtr4d 2866 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))
268189, 267oveq12d 7173 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + (((0 𝑋) · (𝐺‘0)) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
269113, 268eqtrd 2856 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) + ((0 𝑋) · (𝐺‘0))) + (((𝑠 + 1) 𝑋) · (𝐺‘(𝑠 + 1)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27075, 102, 2693eqtrd 2860 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 + 1)) ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
27140, 73, 2703eqtrd 2860 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cun 3933  cin 3934  c0 4290  ifcif 4466  {csn 4566   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  ...cfz 12891  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712   Σg cgsu 16713  Mndcmnd 17910  Grpcgrp 18102  -gcsg 18104  .gcmg 18223  CMndccmn 18905  mulGrpcmgp 19238  1rcur 19250  Ringcrg 19296  CRingccrg 19297  LModclmod 19633  var1cv1 20343  Poly1cpl1 20344   Mat cmat 21015   matToPolyMat cmat2pmat 21311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-cntz 18446  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-subrg 19532  df-lmod 19635  df-lss 19703  df-sra 19943  df-rgmod 19944  df-ascl 20086  df-psr 20135  df-mvr 20136  df-mpl 20137  df-opsr 20139  df-psr1 20347  df-vr1 20348  df-ply1 20349  df-dsmm 20875  df-frlm 20890  df-mamu 20994  df-mat 21016  df-mat2pmat 21314
This theorem is referenced by:  cpmadugsum  21485
  Copyright terms: Public domain W3C validator