HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcl Structured version   Visualization version   GIF version

Theorem chintcl 27409
Description: The intersection (infimum) of a nonempty subset of C belongs to C. Part of Theorem 3.13 of [Beran] p. 108. Also part of Definition 3.4-1 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
chintcl ((𝐴C𝐴 ≠ ∅) → 𝐴C )

Proof of Theorem chintcl
StepHypRef Expression
1 inteq 4407 . . 3 (𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → 𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ))
21eleq1d 2671 . 2 (𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → ( 𝐴C if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ∈ C ))
3 sseq1 3588 . . . . 5 (𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → (𝐴C ↔ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ⊆ C ))
4 neeq1 2843 . . . . 5 (𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → (𝐴 ≠ ∅ ↔ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ≠ ∅))
53, 4anbi12d 742 . . . 4 (𝐴 = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → ((𝐴C𝐴 ≠ ∅) ↔ (if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ⊆ C ∧ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ≠ ∅)))
6 sseq1 3588 . . . . 5 ( C = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → ( CC ↔ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ⊆ C ))
7 neeq1 2843 . . . . 5 ( C = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → ( C ≠ ∅ ↔ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ≠ ∅))
86, 7anbi12d 742 . . . 4 ( C = if((𝐴C𝐴 ≠ ∅), 𝐴, C ) → (( CCC ≠ ∅) ↔ (if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ⊆ C ∧ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ≠ ∅)))
9 ssid 3586 . . . . 5 CC
10 h0elch 27330 . . . . . 6 0C
1110ne0ii 3881 . . . . 5 C ≠ ∅
129, 11pm3.2i 469 . . . 4 ( CCC ≠ ∅)
135, 8, 12elimhyp 4095 . . 3 (if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ⊆ C ∧ if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ≠ ∅)
1413chintcli 27408 . 2 if((𝐴C𝐴 ≠ ∅), 𝐴, C ) ∈ C
152, 14dedth 4088 1 ((𝐴C𝐴 ≠ ∅) → 𝐴C )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wss 3539  c0 3873  ifcif 4035   cint 4404   C cch 27004  0c0h 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873  ax-hilex 27074  ax-hfvadd 27075  ax-hvcom 27076  ax-hvass 27077  ax-hv0cl 27078  ax-hvaddid 27079  ax-hfvmul 27080  ax-hvmulid 27081  ax-hvmulass 27082  ax-hvdistr1 27083  ax-hvdistr2 27084  ax-hvmul0 27085  ax-hfi 27154  ax-his1 27157  ax-his2 27158  ax-his3 27159  ax-his4 27160
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-sup 8209  df-inf 8210  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-n0 11143  df-z 11214  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-icc 12012  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-topgen 15876  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-top 20469  df-bases 20470  df-topon 20471  df-lm 20791  df-haus 20877  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26580  df-vc 26595  df-nv 26643  df-va 26646  df-ba 26647  df-sm 26648  df-0v 26649  df-vs 26650  df-nmcv 26651  df-ims 26652  df-hnorm 27043  df-hvsub 27046  df-hlim 27047  df-sh 27282  df-ch 27296  df-ch0 27328
This theorem is referenced by:  ococin  27485
  Copyright terms: Public domain W3C validator