MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chmatval Structured version   Visualization version   GIF version

Theorem chmatval 20574
Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
Hypotheses
Ref Expression
chmatcl.a 𝐴 = (𝑁 Mat 𝑅)
chmatcl.b 𝐵 = (Base‘𝐴)
chmatcl.p 𝑃 = (Poly1𝑅)
chmatcl.y 𝑌 = (𝑁 Mat 𝑃)
chmatcl.x 𝑋 = (var1𝑅)
chmatcl.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chmatcl.s = (-g𝑌)
chmatcl.m · = ( ·𝑠𝑌)
chmatcl.1 1 = (1r𝑌)
chmatcl.h 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
chmatval.s = (-g𝑃)
chmatval.0 0 = (0g𝑃)
Assertion
Ref Expression
chmatval (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))

Proof of Theorem chmatval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chmatcl.h . . . 4 𝐻 = ((𝑋 · 1 ) (𝑇𝑀))
21oveqi 6628 . . 3 (𝐼𝐻𝐽) = (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽)
3 chmatcl.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 19558 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
543ad2ant2 1081 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
65adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑃 ∈ Ring)
74anim2i 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
873adant3 1079 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
9 chmatcl.x . . . . . . . 8 𝑋 = (var1𝑅)
10 eqid 2621 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
119, 3, 10vr1cl 19527 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
12113ad2ant2 1081 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
13 chmatcl.y . . . . . . . . 9 𝑌 = (𝑁 Mat 𝑃)
143, 13pmatring 20438 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
15143adant3 1079 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
16 eqid 2621 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
17 chmatcl.1 . . . . . . . 8 1 = (1r𝑌)
1816, 17ringidcl 18508 . . . . . . 7 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
1915, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
20 chmatcl.m . . . . . . 7 · = ( ·𝑠𝑌)
2110, 13, 16, 20matvscl 20177 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ (𝑋 ∈ (Base‘𝑃) ∧ 1 ∈ (Base‘𝑌))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
228, 12, 19, 21syl12anc 1321 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
2322adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
24 chmatcl.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
25 chmatcl.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
26 chmatcl.b . . . . . 6 𝐵 = (Base‘𝐴)
2724, 25, 26, 3, 13mat2pmatbas 20471 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2827adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑇𝑀) ∈ (Base‘𝑌))
29 simpr 477 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
30 chmatcl.s . . . . 5 = (-g𝑌)
31 chmatval.s . . . . 5 = (-g𝑃)
3213, 16, 30, 31matsubgcell 20180 . . . 4 ((𝑃 ∈ Ring ∧ ((𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇𝑀) ∈ (Base‘𝑌)) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
336, 23, 28, 29, 32syl121anc 1328 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑋 · 1 ) (𝑇𝑀))𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
342, 33syl5eq 2667 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)))
3517a1i 11 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 1 = (1r𝑌))
3635oveq2d 6631 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑋 · (1r𝑌)))
37 simpl 473 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
384adantl 482 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
3911adantl 482 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑃))
4037, 38, 393jca 1240 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
41403adant3 1079 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
4241adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)))
43 chmatval.0 . . . . . . . 8 0 = (0g𝑃)
4413, 10, 20, 43matsc 20196 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4542, 44syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · (1r𝑌)) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
4636, 45eqtrd 2655 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 · 1 ) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 𝑋, 0 )))
47 eqeq12 2634 . . . . . . 7 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝑗𝐼 = 𝐽))
4847ifbid 4086 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
4948adantl 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝑗, 𝑋, 0 ) = if(𝐼 = 𝐽, 𝑋, 0 ))
50 simprl 793 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
51 simpr 477 . . . . . 6 ((𝐼𝑁𝐽𝑁) → 𝐽𝑁)
5251adantl 482 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
53 fvex 6168 . . . . . . . 8 (var1𝑅) ∈ V
549, 53eqeltri 2694 . . . . . . 7 𝑋 ∈ V
55 fvex 6168 . . . . . . . 8 (0g𝑃) ∈ V
5643, 55eqeltri 2694 . . . . . . 7 0 ∈ V
5754, 56ifex 4134 . . . . . 6 if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V
5857a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, 𝑋, 0 ) ∈ V)
5946, 49, 50, 52, 58ovmpt2d 6753 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 · 1 )𝐽) = if(𝐼 = 𝐽, 𝑋, 0 ))
6059oveq1d 6630 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)))
61 ovif 6702 . . 3 (if(𝐼 = 𝐽, 𝑋, 0 ) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽)))
6260, 61syl6eq 2671 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐼(𝑋 · 1 )𝐽) (𝐼(𝑇𝑀)𝐽)) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
6334, 62eqtrd 2655 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐻𝐽) = if(𝐼 = 𝐽, (𝑋 (𝐼(𝑇𝑀)𝐽)), ( 0 (𝐼(𝑇𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3190  ifcif 4064  cfv 5857  (class class class)co 6615  cmpt2 6617  Fincfn 7915  Basecbs 15800   ·𝑠 cvsca 15885  0gc0g 16040  -gcsg 17364  1rcur 18441  Ringcrg 18487  var1cv1 19486  Poly1cpl1 19487   Mat cmat 20153   matToPolyMat cmat2pmat 20449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-ofr 6863  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-hom 15906  df-cco 15907  df-0g 16042  df-gsum 16043  df-prds 16048  df-pws 16050  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-ghm 17598  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-subrg 18718  df-lmod 18805  df-lss 18873  df-sra 19112  df-rgmod 19113  df-ascl 19254  df-psr 19296  df-mvr 19297  df-mpl 19298  df-opsr 19300  df-psr1 19490  df-vr1 19491  df-ply1 19492  df-dsmm 20016  df-frlm 20031  df-mamu 20130  df-mat 20154  df-mat2pmat 20452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator