MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpscmat Structured version   Visualization version   GIF version

Theorem chpscmat 20566
Description: The characteristic polynomial of a (nonempty!) scalar matrix. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpscmat.d 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
chpscmat.s 𝑆 = (algSc‘𝑃)
chpscmat.m = (-g𝑃)
Assertion
Ref Expression
chpscmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((#‘𝑁) (𝑋 (𝑆𝐸))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗   𝐴,𝑐,𝑚   𝐷,𝑛   𝑛,𝐸   𝑛,𝐼   𝑀,𝑐,𝑖,𝑗,𝑚,𝑛   𝑁,𝑐,𝑚,𝑛   𝑃,𝑛   𝑅,𝑐,𝑚,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐷(𝑖,𝑗,𝑚,𝑐)   𝑃(𝑚,𝑐)   𝑆(𝑖,𝑗,𝑚,𝑐)   𝐸(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝐺(𝑖,𝑗,𝑚,𝑛,𝑐)   𝐼(𝑖,𝑗,𝑚,𝑐)   (𝑖,𝑗,𝑚,𝑛,𝑐)   𝑋(𝑚,𝑛,𝑐)

Proof of Theorem chpscmat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 789 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑁 ∈ Fin)
2 simplr 791 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑅 ∈ CRing)
3 elrabi 3342 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → 𝑀 ∈ (Base‘𝐴))
4 chpscmat.d . . . . . 6 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))}
53, 4eleq2s 2716 . . . . 5 (𝑀𝐷𝑀 ∈ (Base‘𝐴))
653ad2ant1 1080 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → 𝑀 ∈ (Base‘𝐴))
76adantl 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑀 ∈ (Base‘𝐴))
8 oveq 6610 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
98eqeq1d 2623 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1092ralbidv 2983 . . . . . . . . 9 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1110rexbidv 3045 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
1211elrab 3346 . . . . . . 7 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} ↔ (𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))))
13 ifnefalse 4070 . . . . . . . . . . . . . . . 16 (𝑖𝑗 → if(𝑖 = 𝑗, 𝑐, (0g𝑅)) = (0g𝑅))
1413eqeq2d 2631 . . . . . . . . . . . . . . 15 (𝑖𝑗 → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) ↔ (𝑖𝑀𝑗) = (0g𝑅)))
1514biimpcd 239 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
1615a1i 11 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1716ralimdva 2956 . . . . . . . . . . . 12 ((((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1817ralimdva 2956 . . . . . . . . . . 11 (((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
1918ex 450 . . . . . . . . . 10 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2019com23 86 . . . . . . . . 9 ((𝑀 ∈ (Base‘𝐴) ∧ 𝑐 ∈ (Base‘𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2120rexlimdva 3024 . . . . . . . 8 (𝑀 ∈ (Base‘𝐴) → (∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))))
2221imp 445 . . . . . . 7 ((𝑀 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2312, 22sylbi 207 . . . . . 6 (𝑀 ∈ {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖𝑁𝑗𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑅))} → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2423, 4eleq2s 2716 . . . . 5 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
25243ad2ant1 1080 . . . 4 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))))
2625impcom 446 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅)))
27 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
28 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
29 chp0mat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
30 chpscmat.s . . . 4 𝑆 = (algSc‘𝑃)
31 eqid 2621 . . . 4 (Base‘𝐴) = (Base‘𝐴)
32 chp0mat.x . . . 4 𝑋 = (var1𝑅)
33 eqid 2621 . . . 4 (0g𝑅) = (0g𝑅)
34 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
35 chpscmat.m . . . 4 = (-g𝑃)
3627, 28, 29, 30, 31, 32, 33, 34, 35chpdmat 20565 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = (0g𝑅))) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
371, 2, 7, 26, 36syl31anc 1326 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
38 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
3938, 38oveq12d 6622 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝑀𝑛) = (𝑘𝑀𝑘))
4039eqeq1d 2623 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝑘𝑀𝑘) = 𝐸))
4140rspccv 3292 . . . . . . . . 9 (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
42413ad2ant3 1082 . . . . . . . 8 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4342adantl 482 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 → (𝑘𝑀𝑘) = 𝐸))
4443imp 445 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) = 𝐸)
4544fveq2d 6152 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝑀𝑘)) = (𝑆𝐸))
4645oveq2d 6620 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) ∧ 𝑘𝑁) → (𝑋 (𝑆‘(𝑘𝑀𝑘))) = (𝑋 (𝑆𝐸)))
4746mpteq2dva 4704 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))) = (𝑘𝑁 ↦ (𝑋 (𝑆𝐸))))
4847oveq2d 6620 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))))
4928ply1crng 19487 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
5034crngmgp 18476 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
51 cmnmnd 18129 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
5249, 50, 513syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
5352ad2antlr 762 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝐺 ∈ Mnd)
54 crngring 18479 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5528ply1ring 19537 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5654, 55syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
57 ringgrp 18473 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5856, 57syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5958ad2antlr 762 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑃 ∈ Grp)
60 eqid 2621 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
6132, 28, 60vr1cl 19506 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
6254, 61syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6362ad2antlr 762 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → 𝑋 ∈ (Base‘𝑃))
64 simpr 477 . . . . . . . . . . . 12 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝐼𝑁)
65 eqid 2621 . . . . . . . . . . . . . . . . 17 (Scalar‘𝑃) = (Scalar‘𝑃)
6656ad2antll 764 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ Ring)
6766adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ Ring)
6828ply1lmod 19541 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
6954, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
7069ad2antll 764 . . . . . . . . . . . . . . . . . 18 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑃 ∈ LMod)
7170adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑃 ∈ LMod)
72 eqid 2621 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
7330, 65, 67, 71, 72, 60asclf 19256 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
745adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑀 ∈ (Base‘𝐴))
7574adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑀 ∈ (Base‘𝐴))
76 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
7729, 76matecl 20150 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑁𝐼𝑁𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7864, 64, 75, 77syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘𝑅))
7928ply1sca 19542 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
8079ad2antll 764 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → 𝑅 = (Scalar‘𝑃))
8180adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → 𝑅 = (Scalar‘𝑃))
8281eqcomd 2627 . . . . . . . . . . . . . . . . . 18 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Scalar‘𝑃) = 𝑅)
8382fveq2d 6152 . . . . . . . . . . . . . . . . 17 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
8478, 83eleqtrrd 2701 . . . . . . . . . . . . . . . 16 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝐼𝑀𝐼) ∈ (Base‘(Scalar‘𝑃)))
8573, 84ffvelrnd 6316 . . . . . . . . . . . . . . 15 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃))
86 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝐸 = (𝐼𝑀𝐼) → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8786eqcoms 2629 . . . . . . . . . . . . . . . 16 ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) = (𝑆‘(𝐼𝑀𝐼)))
8887eleq1d 2683 . . . . . . . . . . . . . . 15 ((𝐼𝑀𝐼) = 𝐸 → ((𝑆𝐸) ∈ (Base‘𝑃) ↔ (𝑆‘(𝐼𝑀𝐼)) ∈ (Base‘𝑃)))
8985, 88syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9089adantr 481 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
91 id 22 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝐼𝑛 = 𝐼)
9291, 91oveq12d 6622 . . . . . . . . . . . . . . . 16 (𝑛 = 𝐼 → (𝑛𝑀𝑛) = (𝐼𝑀𝐼))
9392eqeq1d 2623 . . . . . . . . . . . . . . 15 (𝑛 = 𝐼 → ((𝑛𝑀𝑛) = 𝐸 ↔ (𝐼𝑀𝐼) = 𝐸))
9493imbi1d 331 . . . . . . . . . . . . . 14 (𝑛 = 𝐼 → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9594adantl 482 . . . . . . . . . . . . 13 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → (((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)) ↔ ((𝐼𝑀𝐼) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9690, 95mpbird 247 . . . . . . . . . . . 12 ((((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) ∧ 𝑛 = 𝐼) → ((𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9764, 96rspcimdv 3296 . . . . . . . . . . 11 (((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) ∧ 𝐼𝑁) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃)))
9897ex 450 . . . . . . . . . 10 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝑆𝐸) ∈ (Base‘𝑃))))
9998com23 86 . . . . . . . . 9 ((𝑀𝐷 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃))))
10099ex 450 . . . . . . . 8 (𝑀𝐷 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → (𝐼𝑁 → (𝑆𝐸) ∈ (Base‘𝑃)))))
101100com24 95 . . . . . . 7 (𝑀𝐷 → (𝐼𝑁 → (∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))))
1021013imp 1254 . . . . . 6 ((𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑆𝐸) ∈ (Base‘𝑃)))
103102impcom 446 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑆𝐸) ∈ (Base‘𝑃))
10460, 35grpsubcl 17416 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆𝐸) ∈ (Base‘𝑃)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10559, 63, 103, 104syl3anc 1323 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝑃))
10634, 60mgpbas 18416 . . . 4 (Base‘𝑃) = (Base‘𝐺)
107105, 106syl6eleq 2708 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺))
108 eqid 2621 . . . 4 (Base‘𝐺) = (Base‘𝐺)
109 chp0mat.m . . . 4 = (.g𝐺)
110108, 109gsumconst 18255 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋 (𝑆𝐸)) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((#‘𝑁) (𝑋 (𝑆𝐸))))
11153, 1, 107, 110syl3anc 1323 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆𝐸)))) = ((#‘𝑁) (𝑋 (𝑆𝐸))))
11237, 48, 1113eqtrd 2659 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐷𝐼𝑁 ∧ ∀𝑛𝑁 (𝑛𝑀𝑛) = 𝐸)) → (𝐶𝑀) = ((#‘𝑁) (𝑋 (𝑆𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  ifcif 4058  cmpt 4673  cfv 5847  (class class class)co 6604  Fincfn 7899  #chash 13057  Basecbs 15781  Scalarcsca 15865  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Grpcgrp 17343  -gcsg 17345  .gcmg 17461  CMndccmn 18114  mulGrpcmgp 18410  Ringcrg 18468  CRingccrg 18469  LModclmod 18784  algSccascl 19230  var1cv1 19465  Poly1cpl1 19466   Mat cmat 20132   CharPlyMat cchpmat 20550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-splice 13243  df-reverse 13244  df-s2 13530  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-gim 17622  df-cntz 17671  df-oppg 17697  df-symg 17719  df-pmtr 17783  df-psgn 17832  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-cnfld 19666  df-zring 19738  df-zrh 19771  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-mdet 20310  df-mat2pmat 20431  df-chpmat 20551
This theorem is referenced by:  chpscmat0  20567
  Copyright terms: Public domain W3C validator