MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Structured version   Visualization version   GIF version

Theorem chpub 25144
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))

Proof of Theorem chpub
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chpcl 25049 . . . . 5 (𝐴 ∈ ℝ → (ψ‘𝐴) ∈ ℝ)
21adantr 472 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ∈ ℝ)
3 chtcl 25034 . . . . 5 (𝐴 ∈ ℝ → (θ‘𝐴) ∈ ℝ)
43adantr 472 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) ∈ ℝ)
52, 4resubcld 10650 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ∈ ℝ)
6 simpl 474 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
7 0red 10233 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
8 1red 10247 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
9 0lt1 10742 . . . . . . . . . 10 0 < 1
109a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 1)
11 simpr 479 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
127, 8, 6, 10, 11ltletrd 10389 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 < 𝐴)
136, 12elrpd 12062 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
1413rpge0d 12069 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 𝐴)
156, 14resqrtcld 14355 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
16 ppifi 25031 . . . . 5 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin)
1813adantr 472 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝐴 ∈ ℝ+)
1918relogcld 24568 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
2017, 19fsumrecl 14664 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ∈ ℝ)
2113relogcld 24568 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
2215, 21remulcld 10262 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) · (log‘𝐴)) ∈ ℝ)
23 ppifi 25031 . . . . . . 7 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
2423adantr 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
25 inss2 3977 . . . . . . . . . . . 12 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
26 simpr 479 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
2725, 26sseldi 3742 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
28 prmnn 15590 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
3029nnrpd 12063 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3130relogcld 24568 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
3221adantr 472 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ)
3329nnred 11227 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ)
34 prmuz2 15610 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3527, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
36 eluz2b2 11954 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
3736simprbi 483 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
3835, 37syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 1 < 𝑝)
3933, 38rplogcld 24574 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
4032, 39rerpdivcld 12096 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
41 reflcl 12791 . . . . . . . . 9 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4240, 41syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
4331, 42remulcld 10262 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
4443recnd 10260 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℂ)
4531recnd 10260 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℂ)
4624, 44, 45fsumsub 14719 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
47 0le0 11302 . . . . . . . . 9 0 ≤ 0
4847a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ 0)
498, 6, 6, 14, 11lemul2ad 11156 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) ≤ (𝐴 · 𝐴))
506recnd 10260 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℂ)
5150sqsqrtd 14377 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
5250mulid1d 10249 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴 · 1) = 𝐴)
5351, 52eqtr4d 2797 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) = (𝐴 · 1))
5450sqvald 13199 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
5549, 53, 543brtr4d 4836 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴)↑2) ≤ (𝐴↑2))
566, 14sqrtge0d 14358 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (√‘𝐴))
5715, 6, 56, 14le2sqd 13238 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((√‘𝐴) ≤ 𝐴 ↔ ((√‘𝐴)↑2) ≤ (𝐴↑2)))
5855, 57mpbird 247 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (√‘𝐴) ≤ 𝐴)
59 iccss 12434 . . . . . . . 8 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 0 ∧ (√‘𝐴) ≤ 𝐴)) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
607, 6, 48, 58, 59syl22anc 1478 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (0[,](√‘𝐴)) ⊆ (0[,]𝐴))
61 ssrin 3981 . . . . . . 7 ((0[,](√‘𝐴)) ⊆ (0[,]𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6260, 61syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
6362sselda 3744 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6443, 31resubcld 10650 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
6564recnd 10260 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
6663, 65syldan 488 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℂ)
67 eldifi 3875 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ))
6867, 45sylan2 492 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℂ)
6968mulid2d 10250 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) = (log‘𝑝))
70 inss1 3976 . . . . . . . . . . . . . . . . . 18 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
7170, 26sseldi 3742 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴))
72 0re 10232 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
736adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
74 elicc2 12431 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7572, 73, 74sylancr 698 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
7671, 75mpbid 222 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴))
7776simp3d 1139 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝𝐴)
7867, 77sylan2 492 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝𝐴)
7967, 30sylan2 492 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ+)
8013adantr 472 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ+)
8179, 80logled 24572 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝𝐴 ↔ (log‘𝑝) ≤ (log‘𝐴)))
8278, 81mpbid 222 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ≤ (log‘𝐴))
8369, 82eqbrtrd 4826 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (1 · (log‘𝑝)) ≤ (log‘𝐴))
84 1red 10247 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ∈ ℝ)
8521adantr 472 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) ∈ ℝ)
8667, 39sylan2 492 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝑝) ∈ ℝ+)
8784, 85, 86lemuldivd 12114 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((1 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 1 ≤ ((log‘𝐴) / (log‘𝑝))))
8883, 87mpbid 222 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 1 ≤ ((log‘𝐴) / (log‘𝑝)))
896adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℝ)
9089recnd 10260 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 ∈ ℂ)
9190sqsqrtd 14377 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) = 𝐴)
92 eldifn 3876 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ)) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9392adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
9467, 27sylan2 492 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℙ)
95 elin 3939 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ (𝑝 ∈ (0[,](√‘𝐴)) ∧ 𝑝 ∈ ℙ))
9695rbaib 985 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ∈ (0[,](√‘𝐴))))
98 0red 10233 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ∈ ℝ)
9915adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) ∈ ℝ)
10067, 29sylan2 492 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℕ)
101100nnred 11227 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝑝 ∈ ℝ)
10279rpge0d 12069 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ 𝑝)
103 elicc2 12431 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴))))
104 df-3an 1074 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝 ≤ (√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴)))
105103, 104syl6bb 276 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝 ≤ (√‘𝐴))))
106105baibd 986 . . . . . . . . . . . . . . . . . . . . 21 (((0 ∈ ℝ ∧ (√‘𝐴) ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10798, 99, 101, 102, 106syl22anc 1478 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ (0[,](√‘𝐴)) ↔ 𝑝 ≤ (√‘𝐴)))
10897, 107bitrd 268 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ) ↔ 𝑝 ≤ (√‘𝐴)))
10993, 108mtbid 313 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ¬ 𝑝 ≤ (√‘𝐴))
11099, 101ltnled 10376 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ¬ 𝑝 ≤ (√‘𝐴)))
111109, 110mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (√‘𝐴) < 𝑝)
11256adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 0 ≤ (√‘𝐴))
11399, 101, 112, 102lt2sqd 13237 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴) < 𝑝 ↔ ((√‘𝐴)↑2) < (𝑝↑2)))
114111, 113mpbid 222 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((√‘𝐴)↑2) < (𝑝↑2))
11591, 114eqbrtrrd 4828 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 𝐴 < (𝑝↑2))
116100nnsqcld 13223 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℕ)
117116nnrpd 12063 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝑝↑2) ∈ ℝ+)
118 logltb 24545 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ+ ∧ (𝑝↑2) ∈ ℝ+) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
11980, 117, 118syl2anc 696 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (𝐴 < (𝑝↑2) ↔ (log‘𝐴) < (log‘(𝑝↑2))))
120115, 119mpbid 222 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (log‘(𝑝↑2)))
121 2z 11601 . . . . . . . . . . . . . . 15 2 ∈ ℤ
122 relogexp 24541 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
12379, 121, 122sylancl 697 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘(𝑝↑2)) = (2 · (log‘𝑝)))
124120, 123breqtrd 4830 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (log‘𝐴) < (2 · (log‘𝑝)))
125 2re 11282 . . . . . . . . . . . . . . 15 2 ∈ ℝ
126125a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → 2 ∈ ℝ)
12785, 126, 86ltdivmul2d 12117 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝐴) / (log‘𝑝)) < 2 ↔ (log‘𝐴) < (2 · (log‘𝑝))))
128124, 127mpbird 247 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < 2)
129 df-2 11271 . . . . . . . . . . . 12 2 = (1 + 1)
130128, 129syl6breq 4845 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) < (1 + 1))
13167, 40sylan2 492 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
132 1z 11599 . . . . . . . . . . . 12 1 ∈ ℤ
133 flbi 12811 . . . . . . . . . . . 12 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
134131, 132, 133sylancl 697 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((⌊‘((log‘𝐴) / (log‘𝑝))) = 1 ↔ (1 ≤ ((log‘𝐴) / (log‘𝑝)) ∧ ((log‘𝐴) / (log‘𝑝)) < (1 + 1))))
13588, 130, 134mpbir2and 995 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (⌊‘((log‘𝐴) / (log‘𝑝))) = 1)
136135oveq2d 6829 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = ((log‘𝑝) · 1))
13768mulid1d 10249 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · 1) = (log‘𝑝))
138136, 137eqtrd 2794 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) = (log‘𝑝))
139138oveq1d 6828 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = ((log‘𝑝) − (log‘𝑝)))
14068subidd 10572 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → ((log‘𝑝) − (log‘𝑝)) = 0)
141139, 140eqtrd 2794 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ (((0[,]𝐴) ∩ ℙ) ∖ ((0[,](√‘𝐴)) ∩ ℙ))) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = 0)
14262, 66, 141, 24fsumss 14655 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
143 chpval2 25142 . . . . . . 7 (𝐴 ∈ ℝ → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
144143adantr 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
145 chtval 25035 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
146145adantr 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
147144, 146oveq12d 6831 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = (Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)))
14846, 142, 1473eqtr4rd 2805 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) = Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)))
14963, 64syldan 488 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ∈ ℝ)
15063, 43syldan 488 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ∈ ℝ)
15163, 39syldan 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
152151rpge0d 12069 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
153 inss2 3977 . . . . . . . . . . . 12 ((0[,](√‘𝐴)) ∩ ℙ) ⊆ ℙ
154 simpr 479 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ))
155153, 154sseldi 3742 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℙ)
156155, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℕ)
157156nnrpd 12063 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
158157relogcld 24568 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
159150, 158subge02d 10811 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (0 ≤ (log‘𝑝) ↔ (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝))))))
160152, 159mpbid 222 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))))
16163, 40syldan 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
162 flle 12794 . . . . . . . 8 (((log‘𝐴) / (log‘𝑝)) ∈ ℝ → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
163161, 162syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝)))
16463, 42syldan 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℝ)
165164, 19, 151lemuldiv2d 12115 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴) ↔ (⌊‘((log‘𝐴) / (log‘𝑝))) ≤ ((log‘𝐴) / (log‘𝑝))))
166163, 165mpbird 247 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → ((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) ≤ (log‘𝐴))
167149, 150, 19, 160, 166letrd 10386 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)) → (((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ (log‘𝐴))
16817, 149, 19, 167fsumle 14730 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(((log‘𝑝) · (⌊‘((log‘𝐴) / (log‘𝑝)))) − (log‘𝑝)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
169148, 168eqbrtrd 4826 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴))
17021recnd 10260 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℂ)
171 fsumconst 14721 . . . . 5 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
17217, 170, 171syl2anc 696 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)))
173 hashcl 13339 . . . . . . 7 (((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
17417, 173syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℕ0)
175174nn0red 11544 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ∈ ℝ)
176 logge0 24550 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘𝐴))
177 reflcl 12791 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ∈ ℝ)
17815, 177syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℝ)
179 fzfid 12966 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1...(⌊‘(√‘𝐴))) ∈ Fin)
180 ppisval 25029 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
18115, 180syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) = ((2...(⌊‘(√‘𝐴))) ∩ ℙ))
182 inss1 3976 . . . . . . . . . . 11 ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (2...(⌊‘(√‘𝐴)))
183 2eluzge1 11927 . . . . . . . . . . . 12 2 ∈ (ℤ‘1)
184 fzss1 12573 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
185183, 184mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (2...(⌊‘(√‘𝐴))) ⊆ (1...(⌊‘(√‘𝐴))))
186182, 185syl5ss 3755 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((2...(⌊‘(√‘𝐴))) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
187181, 186eqsstrd 3780 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))))
188 ssdomg 8167 . . . . . . . . 9 ((1...(⌊‘(√‘𝐴))) ∈ Fin → (((0[,](√‘𝐴)) ∩ ℙ) ⊆ (1...(⌊‘(√‘𝐴))) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
189179, 187, 188sylc 65 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴))))
190 hashdom 13360 . . . . . . . . 9 ((((0[,](√‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘(√‘𝐴))) ∈ Fin) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
19117, 179, 190syl2anc 696 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))) ↔ ((0[,](√‘𝐴)) ∩ ℙ) ≼ (1...(⌊‘(√‘𝐴)))))
192189, 191mpbird 247 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (♯‘(1...(⌊‘(√‘𝐴)))))
193 flge0nn0 12815 . . . . . . . . 9 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (⌊‘(√‘𝐴)) ∈ ℕ0)
19415, 56, 193syl2anc 696 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ∈ ℕ0)
195 hashfz1 13328 . . . . . . . 8 ((⌊‘(√‘𝐴)) ∈ ℕ0 → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
196194, 195syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘(1...(⌊‘(√‘𝐴)))) = (⌊‘(√‘𝐴)))
197192, 196breqtrd 4830 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (⌊‘(√‘𝐴)))
198 flle 12794 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
19915, 198syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘(√‘𝐴)) ≤ (√‘𝐴))
200175, 178, 15, 197, 199letrd 10386 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (♯‘((0[,](√‘𝐴)) ∩ ℙ)) ≤ (√‘𝐴))
201175, 15, 21, 176, 200lemul1ad 11155 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((♯‘((0[,](√‘𝐴)) ∩ ℙ)) · (log‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
202172, 201eqbrtrd 4826 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → Σ𝑝 ∈ ((0[,](√‘𝐴)) ∩ ℙ)(log‘𝐴) ≤ ((√‘𝐴) · (log‘𝐴)))
2035, 20, 22, 169, 202letrd 10386 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)))
2042, 4, 22lesubadd2d 10818 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (((ψ‘𝐴) − (θ‘𝐴)) ≤ ((√‘𝐴) · (log‘𝐴)) ↔ (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴)))))
205203, 204mpbid 222 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (ψ‘𝐴) ≤ ((θ‘𝐴) + ((√‘𝐴) · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cdif 3712  cin 3714  wss 3715   class class class wbr 4804  cfv 6049  (class class class)co 6813  cdom 8119  Fincfn 8121  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  +crp 12025  [,]cicc 12371  ...cfz 12519  cfl 12785  cexp 13054  chash 13311  csqrt 14172  Σcsu 14615  cprime 15587  logclog 24500  θccht 25016  ψcchp 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cht 25022  df-vma 25023  df-chp 25024
This theorem is referenced by:  chpchtlim  25367
  Copyright terms: Public domain W3C validator