Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chsssh Structured version   Visualization version   GIF version

Theorem chsssh 27970
 Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
chsssh CS

Proof of Theorem chsssh
StepHypRef Expression
1 chsh 27969 . 2 (𝑥C𝑥S )
21ssriv 3592 1 CS
 Colors of variables: wff setvar class Syntax hints:   ⊆ wss 3560   Sℋ csh 27673   Cℋ cch 27674 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-xp 5090  df-cnv 5092  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fv 5865  df-ov 6618  df-ch 27966 This theorem is referenced by:  chex  27971  chsspwh  27992  chintcli  28078  shatomistici  29108
 Copyright terms: Public domain W3C validator