MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cht1 Structured version   Visualization version   GIF version

Theorem cht1 24936
Description: The Chebyshev function at 1. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
cht1 (θ‘1) = 0

Proof of Theorem cht1
StepHypRef Expression
1 1re 10077 . . 3 1 ∈ ℝ
2 chtval 24881 . . 3 (1 ∈ ℝ → (θ‘1) = Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝))
31, 2ax-mp 5 . 2 (θ‘1) = Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝)
4 ppisval 24875 . . . . 5 (1 ∈ ℝ → ((0[,]1) ∩ ℙ) = ((2...(⌊‘1)) ∩ ℙ))
51, 4ax-mp 5 . . . 4 ((0[,]1) ∩ ℙ) = ((2...(⌊‘1)) ∩ ℙ)
6 1z 11445 . . . . . . . 8 1 ∈ ℤ
7 flid 12649 . . . . . . . 8 (1 ∈ ℤ → (⌊‘1) = 1)
86, 7ax-mp 5 . . . . . . 7 (⌊‘1) = 1
98oveq2i 6701 . . . . . 6 (2...(⌊‘1)) = (2...1)
10 1lt2 11232 . . . . . . 7 1 < 2
11 2z 11447 . . . . . . . 8 2 ∈ ℤ
12 fzn 12395 . . . . . . . 8 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → (1 < 2 ↔ (2...1) = ∅))
1311, 6, 12mp2an 708 . . . . . . 7 (1 < 2 ↔ (2...1) = ∅)
1410, 13mpbi 220 . . . . . 6 (2...1) = ∅
159, 14eqtri 2673 . . . . 5 (2...(⌊‘1)) = ∅
1615ineq1i 3843 . . . 4 ((2...(⌊‘1)) ∩ ℙ) = (∅ ∩ ℙ)
17 0in 4002 . . . 4 (∅ ∩ ℙ) = ∅
185, 16, 173eqtri 2677 . . 3 ((0[,]1) ∩ ℙ) = ∅
1918sumeq1i 14472 . 2 Σ𝑝 ∈ ((0[,]1) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ∅ (log‘𝑝)
20 sum0 14496 . 2 Σ𝑝 ∈ ∅ (log‘𝑝) = 0
213, 19, 203eqtri 2677 1 (θ‘1) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  cin 3606  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   < clt 10112  2c2 11108  cz 11415  [,]cicc 12216  ...cfz 12364  cfl 12631  Σcsu 14460  cprime 15432  logclog 24346  θccht 24862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-prm 15433  df-cht 24868
This theorem is referenced by:  cht2  24943
  Copyright terms: Public domain W3C validator