MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtnprm Structured version   Visualization version   GIF version

Theorem chtnprm 25658
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
chtnprm ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))

Proof of Theorem chtnprm
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 769 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
21elin2d 4173 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ℙ)
3 simprl 767 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ (𝐴 + 1) ∈ ℙ)
4 nelne2 3112 . . . . . . . . . . . 12 ((𝑥 ∈ ℙ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝑥 ≠ (𝐴 + 1))
52, 3, 4syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ≠ (𝐴 + 1))
6 velsn 4573 . . . . . . . . . . . 12 (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1))
76necon3bbii 3060 . . . . . . . . . . 11 𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1))
85, 7sylibr 235 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ 𝑥 ∈ {(𝐴 + 1)})
91elin1d 4172 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...(𝐴 + 1)))
10 2z 12002 . . . . . . . . . . . . . 14 2 ∈ ℤ
11 zcn 11974 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1211adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℂ)
13 ax-1cn 10583 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
14 pncan 10880 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
1512, 13, 14sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) = 𝐴)
16 elfzuz2 12900 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈ (ℤ‘2))
17 uz2m1nn 12311 . . . . . . . . . . . . . . . . 17 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
189, 16, 173syl 18 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) ∈ ℕ)
1915, 18eqeltrrd 2911 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℕ)
20 nnuz 12269 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
21 2m1e1 11751 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
2221fveq2i 6666 . . . . . . . . . . . . . . . 16 (ℤ‘(2 − 1)) = (ℤ‘1)
2320, 22eqtr4i 2844 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘(2 − 1))
2419, 23eleqtrdi 2920 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ (ℤ‘(2 − 1)))
25 fzsuc2 12953 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2610, 24, 25sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
279, 26eleqtrd 2912 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}))
28 elun 4122 . . . . . . . . . . . 12 (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
2927, 28sylib 219 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3029ord 858 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)}))
318, 30mt3d 150 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...𝐴))
3231, 2elind 4168 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∩ ℙ))
3332expr 457 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ) → 𝑥 ∈ ((2...𝐴) ∩ ℙ)))
3433ssrdv 3970 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ((2...𝐴) ∩ ℙ))
35 uzid 12246 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3635adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ𝐴))
37 peano2uz 12289 . . . . . . 7 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
38 fzss2 12935 . . . . . . 7 ((𝐴 + 1) ∈ (ℤ𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1)))
39 ssrin 4207 . . . . . . 7 ((2...𝐴) ⊆ (2...(𝐴 + 1)) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4036, 37, 38, 394syl 19 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4134, 40eqssd 3981 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
42 peano2z 12011 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
4342adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
44 flid 13166 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4543, 44syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4645oveq2d 7161 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
4746ineq1d 4185 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
48 flid 13166 . . . . . . . 8 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
4948adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
5049oveq2d 7161 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
5150ineq1d 4185 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
5241, 47, 513eqtr4d 2863 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
53 zre 11973 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
5453adantr 481 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
55 peano2re 10801 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
56 ppisval 25608 . . . . 5 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
5754, 55, 563syl 18 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
58 ppisval 25608 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
5954, 58syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6052, 57, 593eqtr4d 2863 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
6160sumeq1d 15046 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
62 chtval 25614 . . 3 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
6354, 55, 623syl 18 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
64 chtval 25614 . . 3 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6554, 64syl 17 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6661, 63, 653eqtr4d 2863 1 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  cun 3931  cin 3932  wss 3933  {csn 4557  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  cmin 10858  cn 11626  2c2 11680  cz 11969  cuz 12231  [,]cicc 12729  ...cfz 12880  cfl 13148  Σcsu 15030  cprime 16003  logclog 25065  θccht 25595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-icc 12733  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-sum 15031  df-dvds 15596  df-prm 16004  df-cht 25601
This theorem is referenced by:  chtub  25715
  Copyright terms: Public domain W3C validator