MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtnprm Structured version   Visualization version   GIF version

Theorem chtnprm 24793
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
chtnprm ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))

Proof of Theorem chtnprm
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3817 . . . . . . . . . . . . 13 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ℙ
2 simprr 795 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))
31, 2sseldi 3585 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ℙ)
4 simprl 793 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ (𝐴 + 1) ∈ ℙ)
5 nelne2 2887 . . . . . . . . . . . 12 ((𝑥 ∈ ℙ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝑥 ≠ (𝐴 + 1))
63, 4, 5syl2anc 692 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ≠ (𝐴 + 1))
7 velsn 4169 . . . . . . . . . . . 12 (𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 = (𝐴 + 1))
87necon3bbii 2837 . . . . . . . . . . 11 𝑥 ∈ {(𝐴 + 1)} ↔ 𝑥 ≠ (𝐴 + 1))
96, 8sylibr 224 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ¬ 𝑥 ∈ {(𝐴 + 1)})
10 inss1 3816 . . . . . . . . . . . . . 14 ((2...(𝐴 + 1)) ∩ ℙ) ⊆ (2...(𝐴 + 1))
1110, 2sseldi 3585 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...(𝐴 + 1)))
12 2z 11360 . . . . . . . . . . . . . 14 2 ∈ ℤ
13 zcn 11333 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1413adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℂ)
15 ax-1cn 9945 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
16 pncan 10238 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
1714, 15, 16sylancl 693 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) = 𝐴)
18 elfzuz2 12295 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2...(𝐴 + 1)) → (𝐴 + 1) ∈ (ℤ‘2))
19 uz2m1nn 11714 . . . . . . . . . . . . . . . . 17 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
2011, 18, 193syl 18 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → ((𝐴 + 1) − 1) ∈ ℕ)
2117, 20eqeltrrd 2699 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ ℕ)
22 nnuz 11674 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
23 2m1e1 11086 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
2423fveq2i 6156 . . . . . . . . . . . . . . . 16 (ℤ‘(2 − 1)) = (ℤ‘1)
2522, 24eqtr4i 2646 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘(2 − 1))
2621, 25syl6eleq 2708 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝐴 ∈ (ℤ‘(2 − 1)))
27 fzsuc2 12347 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2812, 26, 27sylancr 694 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
2911, 28eleqtrd 2700 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}))
30 elun 3736 . . . . . . . . . . . 12 (𝑥 ∈ ((2...𝐴) ∪ {(𝐴 + 1)}) ↔ (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3129, 30sylib 208 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (𝑥 ∈ (2...𝐴) ∨ 𝑥 ∈ {(𝐴 + 1)}))
3231ord 392 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → (¬ 𝑥 ∈ (2...𝐴) → 𝑥 ∈ {(𝐴 + 1)}))
339, 32mt3d 140 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ (2...𝐴))
3433, 3elind 3781 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (¬ (𝐴 + 1) ∈ ℙ ∧ 𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ))) → 𝑥 ∈ ((2...𝐴) ∩ ℙ))
3534expr 642 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝑥 ∈ ((2...(𝐴 + 1)) ∩ ℙ) → 𝑥 ∈ ((2...𝐴) ∩ ℙ)))
3635ssrdv 3593 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) ⊆ ((2...𝐴) ∩ ℙ))
37 uzid 11653 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3837adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ𝐴))
39 peano2uz 11692 . . . . . . 7 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
40 fzss2 12330 . . . . . . 7 ((𝐴 + 1) ∈ (ℤ𝐴) → (2...𝐴) ⊆ (2...(𝐴 + 1)))
41 ssrin 3821 . . . . . . 7 ((2...𝐴) ⊆ (2...(𝐴 + 1)) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4238, 39, 40, 414syl 19 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ⊆ ((2...(𝐴 + 1)) ∩ ℙ))
4336, 42eqssd 3604 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
44 peano2z 11369 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
4544adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
46 flid 12556 . . . . . . . 8 ((𝐴 + 1) ∈ ℤ → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4745, 46syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘(𝐴 + 1)) = (𝐴 + 1))
4847oveq2d 6626 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘(𝐴 + 1))) = (2...(𝐴 + 1)))
4948ineq1d 3796 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(𝐴 + 1)) ∩ ℙ))
50 flid 12556 . . . . . . . 8 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
5150adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (⌊‘𝐴) = 𝐴)
5251oveq2d 6626 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (2...(⌊‘𝐴)) = (2...𝐴))
5352ineq1d 3796 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((2...𝐴) ∩ ℙ))
5443, 49, 533eqtr4d 2665 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((2...(⌊‘(𝐴 + 1))) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
55 zre 11332 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
5655adantr 481 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
57 peano2re 10160 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
58 ppisval 24743 . . . . 5 ((𝐴 + 1) ∈ ℝ → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
5956, 57, 583syl 18 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((2...(⌊‘(𝐴 + 1))) ∩ ℙ))
60 ppisval 24743 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6156, 60syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
6254, 59, 613eqtr4d 2665 . . 3 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → ((0[,](𝐴 + 1)) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
6362sumeq1d 14372 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
64 chtval 24749 . . 3 ((𝐴 + 1) ∈ ℝ → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
6556, 57, 643syl 18 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = Σ𝑝 ∈ ((0[,](𝐴 + 1)) ∩ ℙ)(log‘𝑝))
66 chtval 24749 . . 3 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6756, 66syl 17 . 2 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝))
6863, 65, 673eqtr4d 2665 1 ((𝐴 ∈ ℤ ∧ ¬ (𝐴 + 1) ∈ ℙ) → (θ‘(𝐴 + 1)) = (θ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  cun 3557  cin 3558  wss 3559  {csn 4153  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890  cmin 10217  cn 10971  2c2 11021  cz 11328  cuz 11638  [,]cicc 12127  ...cfz 12275  cfl 12538  Σcsu 14357  cprime 15316  logclog 24218  θccht 24730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-icc 12131  df-fz 12276  df-fl 12540  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-sum 14358  df-dvds 14915  df-prm 15317  df-cht 24736
This theorem is referenced by:  chtub  24850
  Copyright terms: Public domain W3C validator