MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1ub Structured version   Visualization version   GIF version

Theorem chto1ub 26054
Description: The θ function is upper bounded by a linear term. Corollary of chtub 25790. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chto1ub (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)

Proof of Theorem chto1ub
StepHypRef Expression
1 rpssre 12399 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 rpre 12400 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4 chtcl 25688 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
6 rerpdivcl 12422 . . . . . 6 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
75, 6mpancom 686 . . . . 5 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
87recnd 10671 . . . 4 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℂ)
98adantl 484 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
10 3re 11720 . . . 4 3 ∈ ℝ
1110a1i 11 . . 3 (⊤ → 3 ∈ ℝ)
12 2rp 12397 . . . . . 6 2 ∈ ℝ+
13 relogcl 25161 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
1412, 13ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
15 2re 11714 . . . . 5 2 ∈ ℝ
1614, 15remulcli 10659 . . . 4 ((log‘2) · 2) ∈ ℝ
1716a1i 11 . . 3 (⊤ → ((log‘2) · 2) ∈ ℝ)
18 chtge0 25691 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 ≤ (θ‘𝑥))
193, 18syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ (θ‘𝑥))
20 rpregt0 12406 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21 divge0 11511 . . . . . . . 8 ((((θ‘𝑥) ∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((θ‘𝑥) / 𝑥))
225, 19, 20, 21syl21anc 835 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 ≤ ((θ‘𝑥) / 𝑥))
237, 22absidd 14784 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
2423adantr 483 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
257adantr 483 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
2616a1i 11 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · 2) ∈ ℝ)
275adantr 483 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ)
283adantr 483 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℝ)
29 remulcl 10624 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3015, 28, 29sylancr 589 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (2 · 𝑥) ∈ ℝ)
31 resubcl 10952 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ)
3230, 10, 31sylancl 588 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) ∈ ℝ)
33 remulcl 10624 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
3414, 32, 33sylancr 589 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
35 remulcl 10624 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3614, 30, 35sylancr 589 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3715a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℝ)
3810a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ∈ ℝ)
39 2lt3 11812 . . . . . . . . . . . 12 2 < 3
4039a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 3)
41 simpr 487 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ≤ 𝑥)
4237, 38, 28, 40, 41ltletrd 10802 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 𝑥)
43 chtub 25790 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 < 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
4428, 42, 43syl2anc 586 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
45 3rp 12398 . . . . . . . . . . 11 3 ∈ ℝ+
46 ltsubrp 12428 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥))
4730, 45, 46sylancl 588 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) < (2 · 𝑥))
48 1lt2 11811 . . . . . . . . . . . . . 14 1 < 2
49 rplogcl 25189 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
5015, 48, 49mp2an 690 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ+
51 elrp 12394 . . . . . . . . . . . . 13 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
5250, 51mpbi 232 . . . . . . . . . . . 12 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
5352a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
54 ltmul2 11493 . . . . . . . . . . 11 ((((2 · 𝑥) − 3) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5532, 30, 53, 54syl3anc 1367 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5647, 55mpbid 234 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥)))
5727, 34, 36, 44, 56lttrd 10803 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · (2 · 𝑥)))
5814recni 10657 . . . . . . . . . 10 (log‘2) ∈ ℂ
5958a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (log‘2) ∈ ℂ)
60 2cnd 11718 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℂ)
613recnd 10671 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6261adantr 483 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℂ)
6359, 60, 62mulassd 10666 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥)))
6457, 63breqtrrd 5096 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < (((log‘2) · 2) · 𝑥))
6520adantr 483 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
66 ltdivmul2 11519 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6727, 26, 65, 66syl3anc 1367 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6864, 67mpbird 259 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) < ((log‘2) · 2))
6925, 26, 68ltled 10790 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ≤ ((log‘2) · 2))
7024, 69eqbrtrd 5090 . . . 4 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
7170adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
722, 9, 11, 17, 71elo1d 14895 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
7372mptru 1544 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wss 3938   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  3c3 11696  +crp 12392  abscabs 14595  𝑂(1)co1 14845  logclog 25140  θccht 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-o1 14849  df-lo1 14850  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cht 25676
This theorem is referenced by:  chebbnd2  26055  chpo1ub  26058
  Copyright terms: Public domain W3C validator