MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilim Structured version   Visualization version   GIF version

Theorem chtppilim 26054
Description: The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtppilim (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem chtppilim
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 11854 . . . . . . . . 9 (1 / 2) ∈ ℝ
2 1re 10644 . . . . . . . . . 10 1 ∈ ℝ
3 rpre 12400 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4 resubcl 10953 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 − 𝑦) ∈ ℝ)
52, 3, 4sylancr 589 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) ∈ ℝ)
6 ifcl 4514 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (1 − 𝑦) ∈ ℝ) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
71, 5, 6sylancr 589 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
8 0red 10647 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ∈ ℝ)
91a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ∈ ℝ)
10 halfgt0 11856 . . . . . . . . . 10 0 < (1 / 2)
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < (1 / 2))
12 max2 12583 . . . . . . . . . 10 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
135, 1, 12sylancl 588 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
148, 9, 7, 11, 13ltletrd 10803 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
157, 14elrpd 12431 . . . . . . 7 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ+)
1615rpsqrtcld 14774 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) ∈ ℝ+)
17 halflt1 11858 . . . . . . . . 9 (1 / 2) < 1
18 ltsubrp 12428 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (1 − 𝑦) < 1)
192, 18mpan 688 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) < 1)
20 breq1 5072 . . . . . . . . . 10 ((1 / 2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 / 2) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
21 breq1 5072 . . . . . . . . . 10 ((1 − 𝑦) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 − 𝑦) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
2220, 21ifboth 4508 . . . . . . . . 9 (((1 / 2) < 1 ∧ (1 − 𝑦) < 1) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2317, 19, 22sylancr 589 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2415rpge0d 12438 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
252a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 1 ∈ ℝ)
26 0le1 11166 . . . . . . . . . 10 0 ≤ 1
2726a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ 1)
287, 24, 25, 27sqrtltd 14790 . . . . . . . 8 (𝑦 ∈ ℝ+ → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1 ↔ (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1)))
2923, 28mpbid 234 . . . . . . 7 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1))
30 sqrt1 14634 . . . . . . 7 (√‘1) = 1
3129, 30breqtrdi 5110 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < 1)
3216, 31chtppilimlem2 26053 . . . . 5 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
335adantr 483 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ∈ ℝ)
34 max1 12581 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
3533, 1, 34sylancl 588 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
367adantr 483 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
37 2re 11714 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 elicopnf 12836 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4039simplbi 500 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
41 chtcl 25689 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ)
43 ppinncl 25754 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
4439, 43sylbi 219 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
4544nnrpd 12432 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
462a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
4737a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
48 1lt2 11811 . . . . . . . . . . . . . . . . 17 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 < 2)
5039simprbi 499 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
5146, 47, 40, 49, 50ltletrd 10803 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
5240, 51rplogcld 25215 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
5345, 52rpmulcld 12450 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
5442, 53rerpdivcld 12465 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
5554adantl 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
56 lelttr 10734 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5733, 36, 55, 56syl3anc 1367 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5835, 57mpand 693 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
597recnd 10672 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℂ)
6059sqsqrtd 14802 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6160adantr 483 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6261oveq1d 7174 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) = (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))))
6362breq1d 5079 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
6442adantl 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
6553rpregt0d 12440 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
6665adantl 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
67 ltmuldiv 11516 . . . . . . . . . . 11 ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ (θ‘𝑥) ∈ ℝ ∧ (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥)))) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6836, 64, 66, 67syl3anc 1367 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6963, 68bitrd 281 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
70 0red 10647 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
71 2pos 11743 . . . . . . . . . . . . . . . . . . 19 0 < 2
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 < 2)
7370, 47, 40, 72, 50ltletrd 10803 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
7440, 73elrpd 12431 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
75 chtleppi 25789 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7753rpcnd 12436 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
7877mulid1d 10661 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) · 1) = ((π𝑥) · (log‘𝑥)))
7976, 78breqtrrd 5097 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1))
8042, 46, 53ledivmuld 12487 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1 ↔ (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1)))
8179, 80mpbird 259 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1)
8254, 46, 81abssuble0d 14795 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) = (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8382breq1d 5079 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
8483adantl 484 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
852a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
863adantr 483 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 𝑦 ∈ ℝ)
87 ltsub23 11123 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8885, 55, 86, 87syl3anc 1367 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8984, 88bitrd 281 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
9058, 69, 893imtr4d 296 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9190imim2d 57 . . . . . . 7 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → (𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9291ralimdva 3180 . . . . . 6 (𝑦 ∈ ℝ+ → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9392reximdv 3276 . . . . 5 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9432, 93mpd 15 . . . 4 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9594rgen 3151 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)
9654recnd 10672 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9796adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9897ralrimiva 3185 . . . 4 (⊤ → ∀𝑥 ∈ (2[,)+∞)((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9940ssriv 3974 . . . . 5 (2[,)+∞) ⊆ ℝ
10099a1i 11 . . . 4 (⊤ → (2[,)+∞) ⊆ ℝ)
101 1cnd 10639 . . . 4 (⊤ → 1 ∈ ℂ)
10298, 100, 101rlim2 14856 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
10395, 102mpbiri 260 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
104103mptru 1543 1 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wtru 1537  wcel 2113  wral 3141  wrex 3142  wss 3939  ifcif 4470   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   · cmul 10545  +∞cpnf 10675   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  +crp 12392  [,)cico 12743  cexp 13432  csqrt 14595  abscabs 14596  𝑟 crli 14845  logclog 25141  θccht 25671  πcppi 25674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-o1 14850  df-lo1 14851  df-sum 15046  df-ef 15424  df-e 15425  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143  df-cxp 25144  df-cht 25677  df-ppi 25680
This theorem is referenced by:  chebbnd2  26056  chto1lb  26057  pnt  26193
  Copyright terms: Public domain W3C validator