MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   GIF version

Theorem chtppilimlem1 24879
Description: Lemma for chtppilim 24881. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
chtppilim.3 (𝜑𝑁 ∈ (2[,)+∞))
chtppilim.4 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
Assertion
Ref Expression
chtppilimlem1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))

Proof of Theorem chtppilimlem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
21rpred 11704 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 9924 . . . . 5 (𝜑𝐴 ∈ ℂ)
43sqvald 12822 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
54oveq1d 6542 . . 3 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))))
6 chtppilim.3 . . . . . . . . 9 (𝜑𝑁 ∈ (2[,)+∞))
7 2re 10937 . . . . . . . . . 10 2 ∈ ℝ
8 elicopnf 12096 . . . . . . . . . 10 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
97, 8ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
106, 9sylib 206 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1110simpld 473 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
12 ppicl 24574 . . . . . . 7 (𝑁 ∈ ℝ → (π𝑁) ∈ ℕ0)
1311, 12syl 17 . . . . . 6 (𝜑 → (π𝑁) ∈ ℕ0)
1413nn0red 11199 . . . . 5 (𝜑 → (π𝑁) ∈ ℝ)
1514recnd 9924 . . . 4 (𝜑 → (π𝑁) ∈ ℂ)
16 0red 9897 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
177a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
18 2pos 10959 . . . . . . . . 9 0 < 2
1918a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
2010simprd 477 . . . . . . . 8 (𝜑 → 2 ≤ 𝑁)
2116, 17, 11, 19, 20ltletrd 10048 . . . . . . 7 (𝜑 → 0 < 𝑁)
2211, 21elrpd 11701 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
2322relogcld 24090 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
2423recnd 9924 . . . 4 (𝜑 → (log‘𝑁) ∈ ℂ)
253, 3, 15, 24mul4d 10099 . . 3 (𝜑 → ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
265, 25eqtrd 2643 . 2 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
272, 14remulcld 9926 . . . 4 (𝜑 → (𝐴 · (π𝑁)) ∈ ℝ)
282, 23remulcld 9926 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ)
2927, 28remulcld 9926 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) ∈ ℝ)
3022, 2rpcxpcld 24193 . . . . . . . 8 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ+)
3130rpred 11704 . . . . . . 7 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ)
32 ppicl 24574 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3331, 32syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3433nn0red 11199 . . . . 5 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℝ)
3514, 34resubcld 10309 . . . 4 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) ∈ ℝ)
3635, 28remulcld 9926 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ∈ ℝ)
37 chtcl 24552 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
3811, 37syl 17 . . 3 (𝜑 → (θ‘𝑁) ∈ ℝ)
39 1red 9911 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
40 1lt2 11041 . . . . . . . 8 1 < 2
4140a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
4239, 17, 11, 41, 20ltletrd 10048 . . . . . 6 (𝜑 → 1 < 𝑁)
4311, 42rplogcld 24096 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
441, 43rpmulcld 11720 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ+)
4514, 31resubcld 10309 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) ∈ ℝ)
46 ppinncl 24617 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (π𝑁) ∈ ℕ)
4831, 47nndivred 10916 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) ∈ ℝ)
49 chtppilim.4 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
5048, 39, 2, 49ltsub13d 10482 . . . . . . 7 (𝜑𝐴 < (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5131recnd 9924 . . . . . . . . 9 (𝜑 → (𝑁𝑐𝐴) ∈ ℂ)
5247nnrpd 11702 . . . . . . . . . 10 (𝜑 → (π𝑁) ∈ ℝ+)
5352rpcnne0d 11713 . . . . . . . . 9 (𝜑 → ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0))
54 divsubdir 10570 . . . . . . . . 9 (((π𝑁) ∈ ℂ ∧ (𝑁𝑐𝐴) ∈ ℂ ∧ ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0)) → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
5515, 51, 53, 54syl3anc 1317 . . . . . . . 8 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
56 divid 10563 . . . . . . . . . 10 (((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0) → ((π𝑁) / (π𝑁)) = 1)
5753, 56syl 17 . . . . . . . . 9 (𝜑 → ((π𝑁) / (π𝑁)) = 1)
5857oveq1d 6542 . . . . . . . 8 (𝜑 → (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5955, 58eqtrd 2643 . . . . . . 7 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
6050, 59breqtrrd 4605 . . . . . 6 (𝜑𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)))
612, 45, 52ltmuldivd 11751 . . . . . 6 (𝜑 → ((𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)) ↔ 𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁))))
6260, 61mpbird 245 . . . . 5 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)))
63 ppiltx 24620 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ+ → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6430, 63syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6534, 31, 14, 64ltsub2dd 10489 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6627, 45, 35, 62, 65lttrd 10049 . . . 4 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6727, 35, 44, 66ltmul1dd 11759 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
68 fzfid 12589 . . . . . 6 (𝜑 → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin)
69 inss1 3794 . . . . . 6 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))
70 ssfi 8042 . . . . . 6 (((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin ∧ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
7168, 69, 70sylancl 692 . . . . 5 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
72 inss2 3795 . . . . . . . 8 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ℙ
73 simpr 475 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ))
7472, 73sseldi 3565 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
75 prmnn 15172 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7675nnrpd 11702 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
7774, 76syl 17 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
7877relogcld 24090 . . . . 5 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
7971, 78fsumrecl 14258 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ∈ ℝ)
8028recnd 9924 . . . . . . 7 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℂ)
81 fsumconst 14310 . . . . . . 7 ((((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin ∧ (𝐴 · (log‘𝑁)) ∈ ℂ) → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
8271, 80, 81syl2anc 690 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
83 ppifl 24603 . . . . . . . . . 10 (𝑁 ∈ ℝ → (π‘(⌊‘𝑁)) = (π𝑁))
8411, 83syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘𝑁)) = (π𝑁))
85 ppifl 24603 . . . . . . . . . 10 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8631, 85syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8784, 86oveq12d 6545 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = ((π𝑁) − (π‘(𝑁𝑐𝐴))))
8839, 11, 42ltled 10036 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
89 chtppilim.2 . . . . . . . . . . . . 13 (𝜑𝐴 < 1)
90 1re 9895 . . . . . . . . . . . . . 14 1 ∈ ℝ
91 ltle 9977 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 → 𝐴 ≤ 1))
922, 90, 91sylancl 692 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 1 → 𝐴 ≤ 1))
9389, 92mpd 15 . . . . . . . . . . . 12 (𝜑𝐴 ≤ 1)
9411, 88, 2, 39, 93cxplead 24184 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐𝐴) ≤ (𝑁𝑐1))
9511recnd 9924 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
9695cxp1d 24169 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐1) = 𝑁)
9794, 96breqtrd 4603 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ 𝑁)
98 flword2 12431 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁𝑐𝐴) ≤ 𝑁) → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
9931, 11, 97, 98syl3anc 1317 . . . . . . . . 9 (𝜑 → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
100 ppidif 24606 . . . . . . . . 9 ((⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))) → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10287, 101eqtr3d 2645 . . . . . . 7 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) = (#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
103102oveq1d 6542 . . . . . 6 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) = ((#‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
10482, 103eqtr4d 2646 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
10528adantr 479 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ∈ ℝ)
10631adantr 479 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ∈ ℝ)
107 reflcl 12414 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (⌊‘(𝑁𝑐𝐴)) ∈ ℝ)
108 peano2re 10060 . . . . . . . . . . 11 ((⌊‘(𝑁𝑐𝐴)) ∈ ℝ → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
10931, 107, 1083syl 18 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
110109adantr 479 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
11177rpred 11704 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
112 fllep1 12419 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11331, 112syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
114113adantr 479 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11569, 73sseldi 3565 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)))
116 elfzle1 12170 . . . . . . . . . 10 (𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
117115, 116syl 17 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
118106, 110, 111, 114, 117letrd 10045 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ 𝑝)
11922rpne0d 11709 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12095, 119, 3cxpefd 24175 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) = (exp‘(𝐴 · (log‘𝑁))))
121120eqcomd 2615 . . . . . . . . 9 (𝜑 → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
122121adantr 479 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
12377reeflogd 24091 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
124118, 122, 1233brtr4d 4609 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝)))
125 efle 14633 . . . . . . . 8 (((𝐴 · (log‘𝑁)) ∈ ℝ ∧ (log‘𝑝) ∈ ℝ) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
126105, 78, 125syl2anc 690 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
127124, 126mpbird 245 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ≤ (log‘𝑝))
12871, 105, 78, 127fsumle 14318 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
129104, 128eqbrtrrd 4601 . . . 4 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
130 fzfid 12589 . . . . . . 7 (𝜑 → (1...(⌊‘𝑁)) ∈ Fin)
131 inss1 3794 . . . . . . 7 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))
132 ssfi 8042 . . . . . . 7 (((1...(⌊‘𝑁)) ∈ Fin ∧ ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))) → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
133130, 131, 132sylancl 692 . . . . . 6 (𝜑 → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
134 inss2 3795 . . . . . . . . . . . . 13 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ ℙ
135 simpr 475 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ))
136134, 135sseldi 3565 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
137 prmuz2 15192 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
138136, 137syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
139 eluz2b2 11593 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
140138, 139sylib 206 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
141140simpld 473 . . . . . . . . 9 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℕ)
142141nnred 10882 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
143140simprd 477 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 1 < 𝑝)
144142, 143rplogcld 24096 . . . . . . 7 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
145144rpred 11704 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
146144rpge0d 11708 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
14730rpge0d 11708 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑁𝑐𝐴))
148 flge0nn0 12438 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 0 ≤ (𝑁𝑐𝐴)) → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
14931, 147, 148syl2anc 690 . . . . . . . . 9 (𝜑 → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
150 nn0p1nn 11179 . . . . . . . . 9 ((⌊‘(𝑁𝑐𝐴)) ∈ ℕ0 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
151149, 150syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
152 nnuz 11555 . . . . . . . 8 ℕ = (ℤ‘1)
153151, 152syl6eleq 2697 . . . . . . 7 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1))
154 fzss1 12206 . . . . . . 7 (((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)))
155 ssrin 3799 . . . . . . 7 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
156153, 154, 1553syl 18 . . . . . 6 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
157133, 145, 146, 156fsumless 14315 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
158 chtval 24553 . . . . . . 7 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
15911, 158syl 17 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
160 2eluzge1 11566 . . . . . . . 8 2 ∈ (ℤ‘1)
161 ppisval2 24548 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
16211, 160, 161sylancl 692 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
163162sumeq1d 14225 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
164159, 163eqtrd 2643 . . . . 5 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
165157, 164breqtrrd 4605 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ (θ‘𝑁))
16636, 79, 38, 129, 165letrd 10045 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ (θ‘𝑁))
16729, 36, 38, 67, 166ltletrd 10048 . 2 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (θ‘𝑁))
16826, 167eqbrtrd 4599 1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  cin 3538  wss 3539   class class class wbr 4577  cfv 5790  (class class class)co 6527  Fincfn 7818  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  +∞cpnf 9927   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cuz 11519  +crp 11664  [,)cico 12004  [,]cicc 12005  ...cfz 12152  cfl 12408  cexp 12677  #chash 12934  Σcsu 14210  expce 14577  cprime 15169  logclog 24022  𝑐ccxp 24023  θccht 24534  πcppi 24537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-dvds 14768  df-prm 15170  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025  df-cht 24540  df-ppi 24543
This theorem is referenced by:  chtppilimlem2  24880
  Copyright terms: Public domain W3C validator