MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chvarvOLD Structured version   Visualization version   GIF version

Theorem chvarvOLD 2268
Description: Obsolete proof of chvarv 2267 as of 14-Jul-2021. (Contributed by NM, 20-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
chvarv.1 (𝑥 = 𝑦 → (𝜑𝜓))
chvarv.2 𝜑
Assertion
Ref Expression
chvarvOLD 𝜓
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem chvarvOLD
StepHypRef Expression
1 nfv 1845 . 2 𝑥𝜓
2 chvarv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
3 chvarv.2 . 2 𝜑
41, 2, 3chvar 2266 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-12 2049  ax-13 2250
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-nf 1707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator