MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicrcl Structured version   Visualization version   GIF version

Theorem cicrcl 17061
Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicrcl ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))

Proof of Theorem cicrcl
StepHypRef Expression
1 cicfval 17055 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
21breqd 5068 . . 3 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅((Iso‘𝐶) supp ∅)𝑆))
3 isofn 17033 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fvex 6676 . . . . . 6 (Base‘𝐶) ∈ V
5 sqxpexg 7466 . . . . . 6 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
64, 5mp1i 13 . . . . 5 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
7 0ex 5202 . . . . . 6 ∅ ∈ V
87a1i 11 . . . . 5 (𝐶 ∈ Cat → ∅ ∈ V)
9 df-br 5058 . . . . . 6 (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅))
10 elsuppfn 7827 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → (⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
119, 10syl5bb 284 . . . . 5 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
123, 6, 8, 11syl3anc 1363 . . . 4 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
13 opelxp2 5590 . . . . 5 (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
1413adantr 481 . . . 4 ((⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅) → 𝑆 ∈ (Base‘𝐶))
1512, 14syl6bi 254 . . 3 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆𝑆 ∈ (Base‘𝐶)))
162, 15sylbid 241 . 2 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑆 ∈ (Base‘𝐶)))
1716imp 407 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wcel 2105  wne 3013  Vcvv 3492  c0 4288  cop 4563   class class class wbr 5057   × cxp 5546   Fn wfn 6343  cfv 6348  (class class class)co 7145   supp csupp 7819  Basecbs 16471  Catccat 16923  Isociso 17004  𝑐 ccic 17053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-supp 7820  df-inv 17006  df-iso 17007  df-cic 17054
This theorem is referenced by:  cicsym  17062  cictr  17063  initoeu2  17264
  Copyright terms: Public domain W3C validator