MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicsym Structured version   Visualization version   GIF version

Theorem cicsym 17062
Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicsym ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)

Proof of Theorem cicsym
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cicrcl 17061 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
2 ciclcl 17060 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
3 eqid 2818 . . . . 5 (Iso‘𝐶) = (Iso‘𝐶)
4 eqid 2818 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 simpl 483 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
6 simpr 485 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
76adantl 482 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
8 simpl 483 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
98adantl 482 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
103, 4, 5, 7, 9cic 17057 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
11 eqid 2818 . . . . . . . . . 10 (Inv‘𝐶) = (Inv‘𝐶)
124, 11, 5, 7, 9, 3isoval 17023 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = dom (𝑅(Inv‘𝐶)𝑆))
134, 11, 5, 9, 7invsym2 17021 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Inv‘𝐶)𝑅) = (𝑅(Inv‘𝐶)𝑆))
1413eqcomd 2824 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Inv‘𝐶)𝑆) = (𝑆(Inv‘𝐶)𝑅))
1514dmeqd 5767 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = dom (𝑆(Inv‘𝐶)𝑅))
16 df-rn 5559 . . . . . . . . . 10 ran (𝑆(Inv‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅)
1715, 16syl6eqr 2871 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1812, 17eqtrd 2853 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1918eleq2d 2895 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ 𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅)))
20 vex 3495 . . . . . . . 8 𝑓 ∈ V
21 elrng 5755 . . . . . . . 8 (𝑓 ∈ V → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2220, 21mp1i 13 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2319, 22bitrd 280 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
24 df-br 5058 . . . . . . . 8 (𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
2524exbii 1839 . . . . . . 7 (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
26 vex 3495 . . . . . . . . . . 11 𝑔 ∈ V
2726, 20opeldm 5769 . . . . . . . . . 10 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅))
284, 11, 5, 9, 7, 3isoval 17023 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Iso‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅))
2928eqcomd 2824 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑆(Inv‘𝐶)𝑅) = (𝑆(Iso‘𝐶)𝑅))
3029eleq2d 2895 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) ↔ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)))
315adantr 481 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝐶 ∈ Cat)
329adantr 481 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆 ∈ (Base‘𝐶))
337adantr 481 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑅 ∈ (Base‘𝐶))
34 simpr 485 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅))
353, 4, 31, 32, 33, 34brcici 17058 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆( ≃𝑐𝐶)𝑅)
3635ex 413 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑆(Iso‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3730, 36sylbid 241 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3827, 37syl5com 31 . . . . . . . . 9 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
3938exlimiv 1922 . . . . . . . 8 (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
4039com12 32 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
4125, 40syl5bi 243 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓𝑆( ≃𝑐𝐶)𝑅))
4223, 41sylbid 241 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4342exlimdv 1925 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4410, 43sylbid 241 . . 3 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑅))
4544impancom 452 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆( ≃𝑐𝐶)𝑅))
461, 2, 45mp2and 695 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wex 1771  wcel 2105  Vcvv 3492  cop 4563   class class class wbr 5057  ccnv 5547  dom cdm 5548  ran crn 5549  cfv 6348  (class class class)co 7145  Basecbs 16471  Catccat 16923  Invcinv 17003  Isociso 17004  𝑐 ccic 17053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-supp 7820  df-sect 17005  df-inv 17006  df-iso 17007  df-cic 17054
This theorem is referenced by:  cicer  17064  initoeu2  17264
  Copyright terms: Public domain W3C validator