MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjdiv Structured version   Visualization version   GIF version

Theorem cjdiv 13838
Description: Complex conjugate distributes over division. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
cjdiv ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))

Proof of Theorem cjdiv
StepHypRef Expression
1 divcl 10635 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
2 cjcl 13779 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
31, 2syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) ∈ ℂ)
4 simp2 1060 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
5 cjcl 13779 . . . 4 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
64, 5syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ∈ ℂ)
7 simp3 1061 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
8 cjne0 13837 . . . . 5 (𝐵 ∈ ℂ → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
94, 8syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 ≠ 0 ↔ (∗‘𝐵) ≠ 0))
107, 9mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘𝐵) ≠ 0)
113, 6, 10divcan4d 10751 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = (∗‘(𝐴 / 𝐵)))
12 cjmul 13816 . . . . 5 (((𝐴 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
131, 4, 12syl2anc 692 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)))
14 divcan1 10638 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
1514fveq2d 6152 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = (∗‘𝐴))
1613, 15eqtr3d 2657 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) = (∗‘𝐴))
1716oveq1d 6619 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
1811, 17eqtr3d 2657 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880   · cmul 9885   / cdiv 10628  ccj 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-cj 13773  df-re 13774  df-im 13775
This theorem is referenced by:  cjdivi  13865  cjdivd  13897  dipcj  27415
  Copyright terms: Public domain W3C validator