MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clabel Structured version   Visualization version   GIF version

Theorem clabel 2778
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
clabel ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem clabel
StepHypRef Expression
1 df-clel 2647 . 2 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴))
2 abeq2 2761 . . . 4 (𝑦 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝑦𝜑))
32anbi2ci 732 . . 3 ((𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
43exbii 1814 . 2 (∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
51, 4bitri 264 1 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  {cab 2637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647
This theorem is referenced by:  sbabel  2822  grothprimlem  9693  ntrneiel2  38701
  Copyright terms: Public domain W3C validator