MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Visualization version   GIF version

Theorem cldllycmp 22106
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 22097.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)

Proof of Theorem cldllycmp
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22084 . . 3 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
2 resttop 21771 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 582 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
4 elrest 16704 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) ↔ ∃𝑢𝐽 𝑥 = (𝑢𝐴)))
5 simpll 765 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝐽 ∈ 𝑛-Locally Comp)
6 simprl 769 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑢𝐽)
7 simprr 771 . . . . . . . . . . 11 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦 ∈ (𝑢𝐴))
87elin1d 4178 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → 𝑦𝑢)
9 nlly2i 22087 . . . . . . . . . 10 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑢𝐽𝑦𝑢) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
105, 6, 8, 9syl3anc 1367 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))
113ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝐴) ∈ Top)
121ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐽 ∈ Top)
13 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 ∈ (Clsd‘𝐽))
14 simprlr 778 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝐽)
15 elrestr 16705 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 ∈ (Clsd‘𝐽) ∧ 𝑤𝐽) → (𝑤𝐴) ∈ (𝐽t 𝐴))
1612, 13, 14, 15syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ (𝐽t 𝐴))
17 simprr1 1217 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝑤)
18 simplrr 776 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢𝐴))
1918elin2d 4179 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦𝐴)
2017, 19elind 4174 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑤𝐴))
21 opnneip 21730 . . . . . . . . . . . . . . 15 (((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ∈ (𝑤𝐴)) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
2211, 16, 20, 21syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
23 simprr2 1218 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑤𝑠)
2423ssrind 4215 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑤𝐴) ⊆ (𝑠𝐴))
25 inss2 4209 . . . . . . . . . . . . . . 15 (𝑠𝐴) ⊆ 𝐴
26 eqid 2824 . . . . . . . . . . . . . . . . . 18 𝐽 = 𝐽
2726cldss 21640 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (Clsd‘𝐽) → 𝐴 𝐽)
2813, 27syl 17 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 𝐽)
2926restuni 21773 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
3012, 28, 29syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝐴 = (𝐽t 𝐴))
3125, 30sseqtrid 4022 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝐽t 𝐴))
32 eqid 2824 . . . . . . . . . . . . . . 15 (𝐽t 𝐴) = (𝐽t 𝐴)
3332ssnei2 21727 . . . . . . . . . . . . . 14 ((((𝐽t 𝐴) ∈ Top ∧ (𝑤𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦})) ∧ ((𝑤𝐴) ⊆ (𝑠𝐴) ∧ (𝑠𝐴) ⊆ (𝐽t 𝐴))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
3411, 22, 24, 31, 33syl22anc 836 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ ((nei‘(𝐽t 𝐴))‘{𝑦}))
35 simprll 777 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 𝑢)
3635elpwid 4553 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠𝑢)
3736ssrind 4215 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ (𝑢𝐴))
38 vex 3500 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
3938inex1 5224 . . . . . . . . . . . . . . 15 (𝑠𝐴) ∈ V
4039elpw 4546 . . . . . . . . . . . . . 14 ((𝑠𝐴) ∈ 𝒫 (𝑢𝐴) ↔ (𝑠𝐴) ⊆ (𝑢𝐴))
4137, 40sylibr 236 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ 𝒫 (𝑢𝐴))
4234, 41elind 4174 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
4325a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝐴)
44 restabs 21776 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝐴𝐴 ∈ (Clsd‘𝐽)) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4512, 43, 13, 44syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
46 inss1 4208 . . . . . . . . . . . . . . . 16 (𝑠𝐴) ⊆ 𝑠
4746a1i 11 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ⊆ 𝑠)
48 restabs 21776 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (𝑠𝐴) ⊆ 𝑠𝑠 ∈ 𝒫 𝑢) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
4912, 47, 35, 48syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) = (𝐽t (𝑠𝐴)))
5045, 49eqtr4d 2862 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) = ((𝐽t 𝑠) ↾t (𝑠𝐴)))
51 simprr3 1219 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐽t 𝑠) ∈ Comp)
52 incom 4181 . . . . . . . . . . . . . . 15 (𝑠𝐴) = (𝐴𝑠)
53 eqid 2824 . . . . . . . . . . . . . . . . 17 (𝐴𝑠) = (𝐴𝑠)
54 ineq1 4184 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (𝑣𝑠) = (𝐴𝑠))
5554rspceeqv 3641 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴𝑠) = (𝐴𝑠)) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
5613, 53, 55sylancl 588 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠))
57 simplrl 775 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢𝐽)
58 elssuni 4871 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐽𝑢 𝐽)
5957, 58syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑢 𝐽)
6036, 59sstrd 3980 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → 𝑠 𝐽)
6126restcld 21783 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6212, 60, 61syl2anc 586 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)(𝐴𝑠) = (𝑣𝑠)))
6356, 62mpbird 259 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝐴𝑠) ∈ (Clsd‘(𝐽t 𝑠)))
6452, 63eqeltrid 2920 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠)))
65 cmpcld 22013 . . . . . . . . . . . . . 14 (((𝐽t 𝑠) ∈ Comp ∧ (𝑠𝐴) ∈ (Clsd‘(𝐽t 𝑠))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6651, 64, 65syl2anc 586 . . . . . . . . . . . . 13 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝑠) ↾t (𝑠𝐴)) ∈ Comp)
6750, 66eqeltrd 2916 . . . . . . . . . . . 12 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp)
68 oveq2 7167 . . . . . . . . . . . . . 14 (𝑣 = (𝑠𝐴) → ((𝐽t 𝐴) ↾t 𝑣) = ((𝐽t 𝐴) ↾t (𝑠𝐴)))
6968eleq1d 2900 . . . . . . . . . . . . 13 (𝑣 = (𝑠𝐴) → (((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp))
7069rspcev 3626 . . . . . . . . . . . 12 (((𝑠𝐴) ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)) ∧ ((𝐽t 𝐴) ↾t (𝑠𝐴)) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7142, 67, 70syl2anc 586 . . . . . . . . . . 11 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ ((𝑠 ∈ 𝒫 𝑢𝑤𝐽) ∧ (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7271expr 459 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) ∧ (𝑠 ∈ 𝒫 𝑢𝑤𝐽)) → ((𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7372rexlimdvva 3297 . . . . . . . . 9 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → (∃𝑠 ∈ 𝒫 𝑢𝑤𝐽 (𝑦𝑤𝑤𝑠 ∧ (𝐽t 𝑠) ∈ Comp) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
7410, 73mpd 15 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ (𝑢𝐽𝑦 ∈ (𝑢𝐴))) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7574anassrs 470 . . . . . . 7 ((((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) ∧ 𝑦 ∈ (𝑢𝐴)) → ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
7675ralrimiva 3185 . . . . . 6 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
77 pweq 4558 . . . . . . . . 9 (𝑥 = (𝑢𝐴) → 𝒫 𝑥 = 𝒫 (𝑢𝐴))
7877ineq2d 4192 . . . . . . . 8 (𝑥 = (𝑢𝐴) → (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴)))
7978rexeqdv 3419 . . . . . . 7 (𝑥 = (𝑢𝐴) → (∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8079raleqbi1dv 3406 . . . . . 6 (𝑥 = (𝑢𝐴) → (∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp ↔ ∀𝑦 ∈ (𝑢𝐴)∃𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 (𝑢𝐴))((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8176, 80syl5ibrcom 249 . . . . 5 (((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) ∧ 𝑢𝐽) → (𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8281rexlimdva 3287 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∃𝑢𝐽 𝑥 = (𝑢𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
834, 82sylbid 242 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (𝐽t 𝐴) → ∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
8483ralrimiv 3184 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp)
85 isnlly 22080 . 2 ((𝐽t 𝐴) ∈ 𝑛-Locally Comp ↔ ((𝐽t 𝐴) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐴)∀𝑦𝑥𝑣 ∈ (((nei‘(𝐽t 𝐴))‘{𝑦}) ∩ 𝒫 𝑥)((𝐽t 𝐴) ↾t 𝑣) ∈ Comp))
863, 84, 85sylanbrc 585 1 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cin 3938  wss 3939  𝒫 cpw 4542  {csn 4570   cuni 4841  cfv 6358  (class class class)co 7159  t crest 16697  Topctop 21504  Clsdccld 21627  neicnei 21708  Compccmp 21997  𝑛-Locally cnlly 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-fin 8516  df-fi 8878  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cld 21630  df-nei 21709  df-cmp 21998  df-nlly 22078
This theorem is referenced by:  rellycmp  23564
  Copyright terms: Public domain W3C validator