Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldmreon Structured version   Visualization version   GIF version

Theorem cldmreon 21100
 Description: The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
cldmreon (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))

Proof of Theorem cldmreon
StepHypRef Expression
1 topontop 20920 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
2 eqid 2760 . . . 4 𝐽 = 𝐽
32cldmre 21084 . . 3 (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
41, 3syl 17 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘ 𝐽))
5 toponuni 20921 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
65fveq2d 6356 . 2 (𝐽 ∈ (TopOn‘𝐵) → (Moore‘𝐵) = (Moore‘ 𝐽))
74, 6eleqtrrd 2842 1 (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2139  ∪ cuni 4588  ‘cfv 6049  Moorecmre 16444  Topctop 20900  TopOnctopon 20917  Clsdccld 21022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-mre 16448  df-top 20901  df-topon 20918  df-cld 21025 This theorem is referenced by:  iscldtop  21101
 Copyright terms: Public domain W3C validator