 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 1946
 Description: When the class variables in definition df-clel 2510 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1939 with the class variables in wcel 1938. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 1882 in order to remove dependencies on ax-10 1966, ax-12 1983, ax-13 2137. Note that there is no DV condition on 𝑥, 𝑦, that is, on the variables of the left-hand side. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 1945 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 1882 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 212 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 194   ∧ wa 382  ∃wex 1694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940 This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695 This theorem is referenced by:  bj-dfclel  31917
 Copyright terms: Public domain W3C validator