MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb3 Structured version   Visualization version   GIF version

Theorem clelsb3 2620
Description: Substitution applied to an atomic wff (class version of elsb3 2326). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem clelsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1796 . . 3 𝑦 𝑤𝐴
21sbco2 2307 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑤]𝑤𝐴)
3 nfv 1796 . . . 4 𝑤 𝑦𝐴
4 eleq1 2580 . . . 4 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
53, 4sbie 2300 . . 3 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
65sbbii 1837 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑦]𝑦𝐴)
7 nfv 1796 . . 3 𝑤 𝑥𝐴
8 eleq1 2580 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
97, 8sbie 2300 . 2 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
102, 6, 93bitr3i 288 1 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 194  [wsb 1830  wcel 1938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ex 1695  df-nf 1699  df-sb 1831  df-cleq 2507  df-clel 2510
This theorem is referenced by:  hblem  2622  cbvreu  3049  sbcel1v  3366  rmo3  3398  kmlem15  8749  iuninc  28553  measiuns  29407  ballotlemodife  29697  bj-nfcf  31947  sbcel1gvOLD  38017  ellimcabssub0  38587
  Copyright terms: Public domain W3C validator