MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb3f Structured version   Visualization version   GIF version

Theorem clelsb3f 2797
Description: Substitution applied to an atomic wff (class version of elsb3 2462). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
Hypothesis
Ref Expression
clelsb3f.1 𝑦𝐴
Assertion
Ref Expression
clelsb3f ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)

Proof of Theorem clelsb3f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clelsb3f.1 . . . 4 𝑦𝐴
21nfcri 2787 . . 3 𝑦 𝑤𝐴
32sbco2 2443 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑤]𝑤𝐴)
4 nfv 1883 . . . 4 𝑤 𝑦𝐴
5 eleq1 2718 . . . 4 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
64, 5sbie 2436 . . 3 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
76sbbii 1944 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑦]𝑦𝐴)
8 nfv 1883 . . 3 𝑤 𝑥𝐴
9 eleq1 2718 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
108, 9sbie 2436 . 2 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
113, 7, 103bitr3i 290 1 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 1937  wcel 2030  wnfc 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-cleq 2644  df-clel 2647  df-nfc 2782
This theorem is referenced by:  rmo3f  29462  suppss2f  29567  fmptdF  29584  disjdsct  29608  esumpfinvalf  30266
  Copyright terms: Public domain W3C validator