![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleq1 | Structured version Visualization version GIF version |
Description: Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
cleq1 | ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleq1lem 13922 | . . 3 ⊢ (𝑅 = 𝑆 → ((𝑅 ⊆ 𝑟 ∧ 𝜑) ↔ (𝑆 ⊆ 𝑟 ∧ 𝜑))) | |
2 | 1 | abbidv 2879 | . 2 ⊢ (𝑅 = 𝑆 → {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
3 | 2 | inteqd 4632 | 1 ⊢ (𝑅 = 𝑆 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ 𝜑)} = ∩ {𝑟 ∣ (𝑆 ⊆ 𝑟 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 {cab 2746 ⊆ wss 3715 ∩ cint 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-in 3722 df-ss 3729 df-int 4628 |
This theorem is referenced by: trcleq1 13929 |
Copyright terms: Public domain | W3C validator |