Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleq1lem Structured version   Visualization version   GIF version

Theorem cleq1lem 13918
 Description: Equality implies bijection. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
cleq1lem (𝐴 = 𝐵 → ((𝐴𝐶𝜑) ↔ (𝐵𝐶𝜑)))

Proof of Theorem cleq1lem
StepHypRef Expression
1 sseq1 3763 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21anbi1d 743 1 (𝐴 = 𝐵 → ((𝐴𝐶𝜑) ↔ (𝐵𝐶𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1628   ⊆ wss 3711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-clab 2743  df-cleq 2749  df-clel 2752  df-in 3718  df-ss 3725 This theorem is referenced by:  cleq1  13919  trcleq12lem  13929  lcmfun  15556  coprmproddvds  15575  nrmsep3  21357  ovnval2b  41268
 Copyright terms: Public domain W3C validator