Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cleq2lem Structured version   Visualization version   GIF version

Theorem cleq2lem 38231
Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
cleq2lem.b (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
cleq2lem (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))

Proof of Theorem cleq2lem
StepHypRef Expression
1 sseq2 3660 . 2 (𝐴 = 𝐵 → (𝑅𝐴𝑅𝐵))
2 cleq2lem.b . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2anbi12d 747 1 (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wss 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-in 3614  df-ss 3621
This theorem is referenced by:  cbvcllem  38232  clublem  38234  rclexi  38239  rtrclex  38241  rtrclexi  38245  clrellem  38246  clcnvlem  38247  trcleq2lemRP  38254  dfrcl2  38283  brtrclfv2  38336  clsk1indlem1  38660
  Copyright terms: Public domain W3C validator