MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1 Structured version   Visualization version   GIF version

Theorem climcn1 14256
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1 𝑍 = (ℤ𝑀)
climcn1.2 (𝜑𝑀 ∈ ℤ)
climcn1.3 (𝜑𝐴𝐵)
climcn1.4 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
climcn1.5 (𝜑𝐺𝐴)
climcn1.6 (𝜑𝐻𝑊)
climcn1.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
climcn1.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
climcn1.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
climcn1 (𝜑𝐻 ⇝ (𝐹𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝐵,𝑘,𝑧   𝑘,𝐺,𝑦,𝑧   𝑘,𝐻,𝑥   𝑘,𝐹,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐺(𝑥)   𝐻(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2 climcn1.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 climcn1.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
43adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
5 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
6 eqidd 2622 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn1.5 . . . . . . . . 9 (𝜑𝐺𝐴)
87adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 14176 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
102uztrn2 11649 . . . . . . . . . . . 12 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
11 climcn1.8 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
1211adantlr 750 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
13 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → (𝑧𝐴) = ((𝐺𝑘) − 𝐴))
1413fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘(𝑧𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
1514breq1d 4623 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
16 fveq2 6148 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐺𝑘) → (𝐹𝑧) = (𝐹‘(𝐺𝑘)))
1716oveq1d 6619 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹‘(𝐺𝑘)) − (𝐹𝐴)))
1817fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘((𝐹𝑧) − (𝐹𝐴))) = (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))))
1918breq1d 4623 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥 ↔ (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2015, 19imbi12d 334 . . . . . . . . . . . . . . 15 (𝑧 = (𝐺𝑘) → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
2120rspcva 3293 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ 𝐵 ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2212, 21sylan 488 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2322an32s 845 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑘𝑍) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2410, 23sylan2 491 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2524anassrs 679 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2625ralimdva 2956 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2726reximdva 3011 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2827ex 450 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
299, 28mpid 44 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3029rexlimdva 3024 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
3130adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
321, 31mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
3332ralrimiva 2960 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
34 climcn1.6 . . 3 (𝜑𝐻𝑊)
35 climcn1.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
36 climcn1.3 . . . 4 (𝜑𝐴𝐵)
37 climcn1.4 . . . . 5 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
3837ralrimiva 2960 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
39 fveq2 6148 . . . . . 6 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
4039eleq1d 2683 . . . . 5 (𝑧 = 𝐴 → ((𝐹𝑧) ∈ ℂ ↔ (𝐹𝐴) ∈ ℂ))
4140rspcv 3291 . . . 4 (𝐴𝐵 → (∀𝑧𝐵 (𝐹𝑧) ∈ ℂ → (𝐹𝐴) ∈ ℂ))
4236, 38, 41sylc 65 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
4338adantr 481 . . . 4 ((𝜑𝑘𝑍) → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
4416eleq1d 2683 . . . . 5 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) ∈ ℂ ↔ (𝐹‘(𝐺𝑘)) ∈ ℂ))
4544rspcv 3291 . . . 4 ((𝐺𝑘) ∈ 𝐵 → (∀𝑧𝐵 (𝐹𝑧) ∈ ℂ → (𝐹‘(𝐺𝑘)) ∈ ℂ))
4611, 43, 45sylc 65 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝐺𝑘)) ∈ ℂ)
472, 3, 34, 35, 42, 46clim2c 14170 . 2 (𝜑 → (𝐻 ⇝ (𝐹𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
4833, 47mpbird 247 1 (𝜑𝐻 ⇝ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878   < clt 10018  cmin 10210  cz 11321  cuz 11631  +crp 11776  abscabs 13908  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322  df-uz 11632  df-clim 14153
This theorem is referenced by:  climcn1lem  14267  climcncf  22611  climrec  39236
  Copyright terms: Public domain W3C validator