Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf Structured version   Visualization version   GIF version

Theorem climinf 41885
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
Hypotheses
Ref Expression
climinf.3 𝑍 = (ℤ𝑀)
climinf.4 (𝜑𝑀 ∈ ℤ)
climinf.5 (𝜑𝐹:𝑍⟶ℝ)
climinf.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf.7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Distinct variable groups:   𝜑,𝑘   𝑥,𝑘,𝐹   𝑘,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥,𝑘)

Proof of Theorem climinf
Dummy variables 𝑗 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf.5 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ)
21frnd 6520 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ⊆ ℝ)
31ffnd 6514 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝑍)
4 climinf.4 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℤ)
5 uzid 12257 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
7 climinf.3 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
86, 7eleqtrrdi 2924 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
9 fnfvelrn 6847 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
103, 8, 9syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1110ne0d 4300 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
12 climinf.7 . . . . . . . . . . . 12 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
13 breq2 5069 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑘) → (𝑥𝑦𝑥 ≤ (𝐹𝑘)))
1413ralrn 6853 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑍 → (∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1514rexbidv 3297 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
163, 15syl 17 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)))
1712, 16mpbird 259 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
182, 11, 173jca 1124 . . . . . . . . . 10 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
1918adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
20 infrecl 11622 . . . . . . . . 9 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
2119, 20syl 17 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
22 simpr 487 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
2321, 22ltaddrpd 12463 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦))
24 rpre 12396 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2524adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
2621, 25readdcld 10669 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
27 infrglb 41869 . . . . . . . 8 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) ∧ (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2819, 26, 27syl2anc 586 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (inf(ran 𝐹, ℝ, < ) < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦)))
2923, 28mpbid 234 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦))
302sselda 3966 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3130adantlr 713 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑘 ∈ ℝ)
3221adantr 483 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3324ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℝ)
3432, 33readdcld 10669 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (inf(ran 𝐹, ℝ, < ) + 𝑦) ∈ ℝ)
3531, 34, 33ltsub1d 11248 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦)))
362, 11, 17, 20syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
3736recnd 10668 . . . . . . . . . . . 12 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3837ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ∈ ℂ)
3933recnd 10668 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → 𝑦 ∈ ℂ)
4038, 39pncand 10997 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) = inf(ran 𝐹, ℝ, < ))
4140breq2d 5077 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → ((𝑘𝑦) < ((inf(ran 𝐹, ℝ, < ) + 𝑦) − 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4235, 41bitrd 281 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) ↔ (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4342biimpd 231 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘 ∈ ran 𝐹) → (𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → (𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4443reximdva 3274 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∃𝑘 ∈ ran 𝐹 𝑘 < (inf(ran 𝐹, ℝ, < ) + 𝑦) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )))
4529, 44mpd 15 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ))
46 oveq1 7162 . . . . . . . . 9 (𝑘 = (𝐹𝑗) → (𝑘𝑦) = ((𝐹𝑗) − 𝑦))
4746breq1d 5075 . . . . . . . 8 (𝑘 = (𝐹𝑗) → ((𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
4847rexrn 6852 . . . . . . 7 (𝐹 Fn 𝑍 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
493, 48syl 17 . . . . . 6 (𝜑 → (∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < )))
5049biimpa 479 . . . . 5 ((𝜑 ∧ ∃𝑘 ∈ ran 𝐹(𝑘𝑦) < inf(ran 𝐹, ℝ, < )) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
5145, 50syldan 593 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ))
521adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝑍⟶ℝ)
537uztrn2 12261 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
54 ffvelrn 6848 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
5552, 53, 54syl2an 597 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
56 simpl 485 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑗𝑍)
57 ffvelrn 6848 . . . . . . . . . . 11 ((𝐹:𝑍⟶ℝ ∧ 𝑗𝑍) → (𝐹𝑗) ∈ ℝ)
5852, 56, 57syl2an 597 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ ℝ)
5936ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
60 simprr 771 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
61 fzssuz 12947 . . . . . . . . . . . . . 14 (𝑗...𝑘) ⊆ (ℤ𝑗)
62 uzss 12264 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
6362, 7sseqtrrdi 4017 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ 𝑍)
6463, 7eleq2s 2931 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
6564ad2antrl 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (ℤ𝑗) ⊆ 𝑍)
6661, 65sstrid 3977 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...𝑘) ⊆ 𝑍)
67 ffvelrn 6848 . . . . . . . . . . . . . . . 16 ((𝐹:𝑍⟶ℝ ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
6867ralrimiva 3182 . . . . . . . . . . . . . . 15 (𝐹:𝑍⟶ℝ → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
691, 68syl 17 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
7069ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛𝑍 (𝐹𝑛) ∈ ℝ)
71 ssralv 4032 . . . . . . . . . . . . 13 ((𝑗...𝑘) ⊆ 𝑍 → (∀𝑛𝑍 (𝐹𝑛) ∈ ℝ → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑛 ∈ (𝑗...𝑘)(𝐹𝑛) ∈ ℝ)
7372r19.21bi 3208 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...𝑘)) → (𝐹𝑛) ∈ ℝ)
74 fzssuz 12947 . . . . . . . . . . . . . 14 (𝑗...(𝑘 − 1)) ⊆ (ℤ𝑗)
7574, 65sstrid 3977 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑗...(𝑘 − 1)) ⊆ 𝑍)
7675sselda 3966 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → 𝑛𝑍)
77 climinf.6 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7877ralrimiva 3182 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7978ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
80 fvoveq1 7178 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
81 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8280, 81breq12d 5078 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
8382rspccva 3621 . . . . . . . . . . . . 13 ((∀𝑘𝑍 (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8479, 83sylan 582 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛𝑍) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8576, 84syldan 593 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) ∧ 𝑛 ∈ (𝑗...(𝑘 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
8660, 73, 85monoord2 13400 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ≤ (𝐹𝑗))
8755, 58, 59, 86lesub1dd 11255 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )))
8855, 59resubcld 11067 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
8958, 59resubcld 11067 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ)
9024ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑦 ∈ ℝ)
91 lelttr 10730 . . . . . . . . . 10 ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9288, 89, 90, 91syl3anc 1367 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) ≤ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) ∧ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦) → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9387, 92mpand 693 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦 → ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
94 ltsub23 11119 . . . . . . . . 9 (((𝐹𝑗) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
9558, 90, 59, 94syl3anc 1367 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑗) − inf(ran 𝐹, ℝ, < )) < 𝑦))
962ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ran 𝐹 ⊆ ℝ)
973adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ+) → 𝐹 Fn 𝑍)
98 fnfvelrn 6847 . . . . . . . . . . . 12 ((𝐹 Fn 𝑍𝑘𝑍) → (𝐹𝑘) ∈ ran 𝐹)
9997, 53, 98syl2an 597 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ran 𝐹)
10096, 99sseldd 3967 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ ℝ)
10117ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
102 infrelb 11625 . . . . . . . . . . 11 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑘) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10396, 101, 99, 102syl3anc 1367 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑘))
10459, 100, 103abssubge0d 14790 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) = ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )))
105104breq1d 5075 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦 ↔ ((𝐹𝑘) − inf(ran 𝐹, ℝ, < )) < 𝑦))
10693, 95, 1053imtr4d 296 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
107106anassrs 470 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → (abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
108107ralrimdva 3189 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
109108reximdva 3274 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍 ((𝐹𝑗) − 𝑦) < inf(ran 𝐹, ℝ, < ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
11051, 109mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
111110ralrimiva 3182 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦)
1127fvexi 6683 . . . 4 𝑍 ∈ V
113 fex 6988 . . . 4 ((𝐹:𝑍⟶ℝ ∧ 𝑍 ∈ V) → 𝐹 ∈ V)
1141, 112, 113sylancl 588 . . 3 (𝜑𝐹 ∈ V)
115 eqidd 2822 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
1161ffvelrnda 6850 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
117116recnd 10668 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1187, 4, 114, 115, 37, 117clim2c 14861 . 2 (𝜑 → (𝐹 ⇝ inf(ran 𝐹, ℝ, < ) ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − inf(ran 𝐹, ℝ, < ))) < 𝑦))
119111, 118mpbird 259 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5065  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  infcinf 8904  cc 10534  cr 10535  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cz 11980  cuz 12242  +crp 12388  ...cfz 12891  abscabs 14592  cli 14840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844
This theorem is referenced by:  climinff  41890  climinf2lem  41985  supcnvlimsup  42019  stirlinglem13  42370
  Copyright terms: Public domain W3C validator