Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2lem Structured version   Visualization version   GIF version

Theorem climinf2lem 40459
Description: A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2lem.1 𝑍 = (ℤ𝑀)
climinf2lem.2 (𝜑𝑀 ∈ ℤ)
climinf2lem.3 (𝜑𝐹:𝑍⟶ℝ)
climinf2lem.4 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2lem.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2lem (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem climinf2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 climinf2lem.1 . . 3 𝑍 = (ℤ𝑀)
2 climinf2lem.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climinf2lem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2lem.4 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
5 climinf2lem.5 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
61, 2, 3, 4, 5climinf 40359 . 2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
73frnd 39943 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
83ffnd 6207 . . . . 5 (𝜑𝐹 Fn 𝑍)
92, 1uzidd2 40159 . . . . 5 (𝜑𝑀𝑍)
10 fnfvelrn 6520 . . . . 5 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
118, 9, 10syl2anc 696 . . . 4 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1211ne0d 39825 . . 3 (𝜑 → ran 𝐹 ≠ ∅)
13 simpr 479 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
14 fvelrnb 6406 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
158, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1615adantr 472 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1713, 16mpbid 222 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
1817adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
19 nfv 1992 . . . . . . . . . . . 12 𝑘𝜑
20 nfra1 3079 . . . . . . . . . . . 12 𝑘𝑘𝑍 𝑥 ≤ (𝐹𝑘)
2119, 20nfan 1977 . . . . . . . . . . 11 𝑘(𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
22 nfv 1992 . . . . . . . . . . 11 𝑘 𝑥𝑦
23 rspa 3068 . . . . . . . . . . . . . 14 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → 𝑥 ≤ (𝐹𝑘))
24 simpl 474 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥 ≤ (𝐹𝑘))
25 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → (𝐹𝑘) = 𝑦)
2624, 25breqtrd 4830 . . . . . . . . . . . . . . 15 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥𝑦)
2726ex 449 . . . . . . . . . . . . . 14 (𝑥 ≤ (𝐹𝑘) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2823, 27syl 17 . . . . . . . . . . . . 13 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2928ex 449 . . . . . . . . . . . 12 (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3029adantl 473 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3121, 22, 30rexlimd 3164 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3231adantr 472 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3318, 32mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
3433ralrimiva 3104 . . . . . . 7 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3534adantlr 753 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3635ex 449 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
3736reximdva 3155 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
385, 37mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
39 infxrre 12379 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
407, 12, 38, 39syl3anc 1477 . 2 (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
416, 40breqtrrd 4832 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058   class class class wbr 4804  ran crn 5267   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  infcinf 8514  cr 10147  1c1 10149   + caddc 10151  *cxr 10285   < clt 10286  cle 10287  cz 11589  cuz 11899  cli 14434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438
This theorem is referenced by:  climinf2  40460
  Copyright terms: Public domain W3C validator