Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2lem Structured version   Visualization version   GIF version

Theorem climinf2lem 41980
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2lem.1 𝑍 = (ℤ𝑀)
climinf2lem.2 (𝜑𝑀 ∈ ℤ)
climinf2lem.3 (𝜑𝐹:𝑍⟶ℝ)
climinf2lem.4 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2lem.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2lem (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem climinf2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 climinf2lem.1 . . 3 𝑍 = (ℤ𝑀)
2 climinf2lem.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climinf2lem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2lem.4 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
5 climinf2lem.5 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
61, 2, 3, 4, 5climinf 41880 . 2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
73frnd 6515 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
83ffnd 6509 . . . . 5 (𝜑𝐹 Fn 𝑍)
92, 1uzidd2 41683 . . . . 5 (𝜑𝑀𝑍)
10 fnfvelrn 6842 . . . . 5 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
118, 9, 10syl2anc 586 . . . 4 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1211ne0d 4300 . . 3 (𝜑 → ran 𝐹 ≠ ∅)
13 simpr 487 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
14 fvelrnb 6720 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
158, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1615adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1713, 16mpbid 234 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
1817adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
19 nfv 1911 . . . . . . . . . . . 12 𝑘𝜑
20 nfra1 3219 . . . . . . . . . . . 12 𝑘𝑘𝑍 𝑥 ≤ (𝐹𝑘)
2119, 20nfan 1896 . . . . . . . . . . 11 𝑘(𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
22 nfv 1911 . . . . . . . . . . 11 𝑘 𝑥𝑦
23 rspa 3206 . . . . . . . . . . . . . 14 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → 𝑥 ≤ (𝐹𝑘))
24 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥 ≤ (𝐹𝑘))
25 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → (𝐹𝑘) = 𝑦)
2624, 25breqtrd 5084 . . . . . . . . . . . . . . 15 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥𝑦)
2726ex 415 . . . . . . . . . . . . . 14 (𝑥 ≤ (𝐹𝑘) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2823, 27syl 17 . . . . . . . . . . . . 13 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2928ex 415 . . . . . . . . . . . 12 (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3029adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3121, 22, 30rexlimd 3317 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3231adantr 483 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3318, 32mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
3433ralrimiva 3182 . . . . . . 7 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3534adantlr 713 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3635ex 415 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
3736reximdva 3274 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
385, 37mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
39 infxrre 12723 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
407, 12, 38, 39syl3anc 1367 . 2 (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
416, 40breqtrrd 5086 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3935  c0 4290   class class class wbr 5058  ran crn 5550   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  infcinf 8899  cr 10530  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cz 11975  cuz 12237  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839
This theorem is referenced by:  climinf2  41981
  Copyright terms: Public domain W3C validator