![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf3 | Structured version Visualization version GIF version |
Description: A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf3.1 | ⊢ Ⅎ𝑘𝜑 |
climinf3.2 | ⊢ Ⅎ𝑘𝐹 |
climinf3.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf3.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf3.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf3.7 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climinf3 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf3.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | climinf3.2 | . 2 ⊢ Ⅎ𝑘𝐹 | |
3 | climinf3.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climinf3.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climinf3.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
6 | climinf3.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
7 | climinf3.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
8 | 5 | ffvelrnda 6522 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 10260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
10 | 1, 9 | ralrimia 39814 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
11 | 2, 3 | climbddf 40422 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
12 | 4, 7, 10, 11 | syl3anc 1477 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
13 | renegcl 10536 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
14 | 13 | ad2antlr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ) |
15 | nfv 1992 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝑥 ∈ ℝ | |
16 | 1, 15 | nfan 1977 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℝ) |
17 | nfra1 3079 | . . . . . . . 8 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
18 | 16, 17 | nfan 1977 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
19 | simpll 807 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (𝜑 ∧ 𝑥 ∈ ℝ)) | |
20 | simpr 479 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
21 | rspa 3068 | . . . . . . . . . 10 ⊢ ((∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
22 | 21 | adantll 752 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
23 | simpr 479 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
24 | 8 | ad4ant13 1207 | . . . . . . . . . . . 12 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝐹‘𝑘) ∈ ℝ) |
25 | simpllr 817 | . . . . . . . . . . . 12 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ) | |
26 | 24, 25 | absled 14368 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ((abs‘(𝐹‘𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥))) |
27 | 23, 26 | mpbid 222 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥)) |
28 | 27 | simpld 477 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹‘𝑘)) |
29 | 19, 20, 22, 28 | syl21anc 1476 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → -𝑥 ≤ (𝐹‘𝑘)) |
30 | 29 | ex 449 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝑘 ∈ 𝑍 → -𝑥 ≤ (𝐹‘𝑘))) |
31 | 18, 30 | ralrimi 3095 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) |
32 | breq1 4807 | . . . . . . . 8 ⊢ (𝑦 = -𝑥 → (𝑦 ≤ (𝐹‘𝑘) ↔ -𝑥 ≤ (𝐹‘𝑘))) | |
33 | 32 | ralbidv 3124 | . . . . . . 7 ⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘))) |
34 | 33 | rspcev 3449 | . . . . . 6 ⊢ ((-𝑥 ∈ ℝ ∧ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
35 | 14, 31, 34 | syl2anc 696 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
36 | 35 | ex 449 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
37 | 36 | rexlimdva 3169 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
38 | 12, 37 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
39 | 1, 2, 3, 4, 5, 6, 38 | climinf2 40442 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 Ⅎwnfc 2889 ∀wral 3050 ∃wrex 3051 class class class wbr 4804 dom cdm 5266 ran crn 5267 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 infcinf 8512 ℂcc 10126 ℝcr 10127 1c1 10129 + caddc 10131 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 -cneg 10459 ℤcz 11569 ℤ≥cuz 11879 abscabs 14173 ⇝ cli 14414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-fz 12520 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |