Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   GIF version

Theorem climisp 40481
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m (𝜑𝑀 ∈ ℤ)
climisp.z 𝑍 = (ℤ𝑀)
climisp.f (𝜑𝐹:𝑍⟶ℂ)
climisp.c (𝜑𝐹𝐴)
climisp.x (𝜑𝑋 ∈ ℝ+)
climisp.l ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
Assertion
Ref Expression
climisp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem climisp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1992 . . . 4 𝑘(𝜑𝑗𝑍)
2 nfra1 3079 . . . 4 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
31, 2nfan 1977 . . 3 𝑘((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4 simplll 815 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
5 climisp.z . . . . . 6 𝑍 = (ℤ𝑀)
65uztrn2 11897 . . . . 5 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
76ad4ant24 1213 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
8 rspa 3068 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
98simprd 482 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
109adantll 752 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
11 simpl3 1232 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
12 neqne 2940 . . . . . . 7 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
13 climisp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
1413rpred 12065 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1514ad2antrr 764 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ)
16 climisp.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1716ffvelrnda 6522 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climisp.c . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
195fvexi 6363 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ V)
2116, 20fexd 39795 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
22 eqidd 2761 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
2321, 22clim 14424 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2418, 23mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2524simpld 477 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
2625adantr 472 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2717, 26subcld 10584 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
2827abscld 14374 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
2928adantr 472 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
30 climisp.l . . . . . . . . 9 ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
31303expa 1112 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
3215, 29, 31lensymd 10380 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3312, 32sylan2 492 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
34333adantl3 1174 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3511, 34condan 870 . . . 4 ((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = 𝐴)
364, 7, 10, 35syl3anc 1477 . . 3 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
373, 36ralrimia 39814 . 2 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
38 breq2 4808 . . . . . 6 (𝑥 = 𝑋 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
3938anbi2d 742 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4039rexralbidv 3196 . . . 4 (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4124simprd 482 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
4240, 41, 13rspcdva 3455 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
43 climisp.m . . . 4 (𝜑𝑀 ∈ ℤ)
445rexuz3 14287 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4543, 44syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4642, 45mpbird 247 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4737, 46reximddv3 39842 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340   class class class wbr 4804  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127   < clt 10266  cle 10267  cmin 10458  cz 11569  cuz 11879  +crp 12025  abscabs 14173  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator