Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlec3 Structured version   Visualization version   GIF version

Theorem climlec3 32967
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
climlec3.1 𝑍 = (ℤ𝑀)
climlec3.2 (𝜑𝑀 ∈ ℤ)
climlec3.3 (𝜑𝐵 ∈ ℝ)
climlec3.4 (𝜑𝐹𝐴)
climlec3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climlec3.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
Assertion
Ref Expression
climlec3 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍

Proof of Theorem climlec3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climlec3.1 . . 3 𝑍 = (ℤ𝑀)
2 climlec3.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climlec3.3 . . . 4 (𝜑𝐵 ∈ ℝ)
43renegcld 11069 . . 3 (𝜑 → -𝐵 ∈ ℝ)
5 climlec3.4 . . . . 5 (𝜑𝐹𝐴)
6 0cnd 10636 . . . . 5 (𝜑 → 0 ∈ ℂ)
71fvexi 6686 . . . . . . 7 𝑍 ∈ V
87mptex 6988 . . . . . 6 (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V
98a1i 11 . . . . 5 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V)
10 climlec3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110recnd 10671 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eqid 2823 . . . . . . 7 (𝑚𝑍 ↦ -(𝐹𝑚)) = (𝑚𝑍 ↦ -(𝐹𝑚))
13 fveq2 6672 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1413negeqd 10882 . . . . . . 7 (𝑚 = 𝑘 → -(𝐹𝑚) = -(𝐹𝑘))
15 simpr 487 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘𝑍)
1610renegcld 11069 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1712, 14, 15, 16fvmptd3 6793 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = -(𝐹𝑘))
18 df-neg 10875 . . . . . 6 -(𝐹𝑘) = (0 − (𝐹𝑘))
1917, 18syl6eq 2874 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = (0 − (𝐹𝑘)))
201, 2, 5, 6, 9, 11, 19climsubc2 14997 . . . 4 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ (0 − 𝐴))
21 df-neg 10875 . . . 4 -𝐴 = (0 − 𝐴)
2220, 21breqtrrdi 5110 . . 3 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ -𝐴)
2317, 16eqeltrd 2915 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) ∈ ℝ)
24 climlec3.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
253adantr 483 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
2610, 25lenegd 11221 . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹𝑘)))
2724, 26mpbid 234 . . . 4 ((𝜑𝑘𝑍) → -𝐵 ≤ -(𝐹𝑘))
2827, 17breqtrrd 5096 . . 3 ((𝜑𝑘𝑍) → -𝐵 ≤ ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘))
291, 2, 4, 22, 23, 28climlec2 15017 . 2 (𝜑 → -𝐵 ≤ -𝐴)
301, 2, 5, 10climrecl 14942 . . 3 (𝜑𝐴 ∈ ℝ)
3130, 3lenegd 11221 . 2 (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
3229, 31mpbird 259 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  cle 10678  cmin 10872  -cneg 10873  cz 11984  cuz 12246  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator