Step | Hyp | Ref
| Expression |
1 | | climliminflimsupd.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
2 | 1 | feqmptd 6288 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
3 | 2 | fveq2d 6233 |
. . . . 5
⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
4 | | climliminflimsupd.2 |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | 4 | fvexi 6240 |
. . . . . . . 8
⊢ 𝑍 ∈ V |
6 | 5 | mptex 6527 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
7 | | liminfcl 40313 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈
ℝ*) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
⊢ (lim
inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈
ℝ* |
9 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈
ℝ*) |
10 | 3, 9 | eqeltrd 2730 |
. . . 4
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ*) |
11 | | nfv 1883 |
. . . . . . 7
⊢
Ⅎ𝑘𝜑 |
12 | | climliminflimsupd.1 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | 1 | ffvelrnda 6399 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
14 | 13 | renegcld 10495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
15 | 11, 12, 4, 14 | limsupvaluz4 40350 |
. . . . . 6
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim
inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
16 | | climrel 14267 |
. . . . . . . . . 10
⊢ Rel
⇝ |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → Rel ⇝
) |
18 | | nfcv 2793 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐹 |
19 | | climliminflimsupd.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
20 | 12, 4, 1 | climlimsup 40310 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
21 | 19, 20 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
22 | 13 | recnd 10106 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
23 | 11, 18, 4, 12, 21, 22 | climneg 40160 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
24 | | releldm 5390 |
. . . . . . . . 9
⊢ ((Rel
⇝ ∧ (𝑘 ∈
𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
25 | 17, 23, 24 | syl2anc 694 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
26 | | eqid 2651 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) |
27 | 14, 26 | fmptd 6425 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
28 | 12, 4, 27 | climlimsup 40310 |
. . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
29 | 25, 28 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
30 | | climuni 14327 |
. . . . . . 7
⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
31 | 29, 23, 30 | syl2anc 694 |
. . . . . 6
⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
32 | 22 | negnegd 10421 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
33 | 32 | mpteq2dva 4777 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
34 | 33, 2 | eqtr4d 2688 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
35 | 34 | fveq2d 6233 |
. . . . . . 7
⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
36 | 35 | xnegeqd 39977 |
. . . . . 6
⊢ (𝜑 → -𝑒(lim
inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim
inf‘𝐹)) |
37 | 15, 31, 36 | 3eqtr3d 2693 |
. . . . 5
⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim
inf‘𝐹)) |
38 | 4, 12, 21, 13 | climrecl 14358 |
. . . . . 6
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
39 | 38 | renegcld 10495 |
. . . . 5
⊢ (𝜑 → -(lim sup‘𝐹) ∈
ℝ) |
40 | 37, 39 | eqeltrrd 2731 |
. . . 4
⊢ (𝜑 → -𝑒(lim
inf‘𝐹) ∈
ℝ) |
41 | | xnegrecl2 40003 |
. . . 4
⊢ (((lim
inf‘𝐹) ∈
ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) ∈
ℝ) |
42 | 10, 40, 41 | syl2anc 694 |
. . 3
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ) |
43 | 42 | recnd 10106 |
. 2
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℂ) |
44 | 38 | recnd 10106 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℂ) |
45 | 42 | rexnegd 39648 |
. . 3
⊢ (𝜑 → -𝑒(lim
inf‘𝐹) = -(lim
inf‘𝐹)) |
46 | 37, 45 | eqtr2d 2686 |
. 2
⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
47 | 43, 44, 46 | neg11d 10442 |
1
⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |