Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmulf Structured version   Visualization version   GIF version

Theorem climmulf 41883
Description: A version of climmul 14988 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climmulf.1 𝑘𝜑
climmulf.2 𝑘𝐹
climmulf.3 𝑘𝐺
climmulf.4 𝑘𝐻
climmulf.5 𝑍 = (ℤ𝑀)
climmulf.6 (𝜑𝑀 ∈ ℤ)
climmulf.7 (𝜑𝐹𝐴)
climmulf.8 (𝜑𝐻𝑋)
climmulf.9 (𝜑𝐺𝐵)
climmulf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climmulf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
climmulf (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climmulf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmulf.5 . 2 𝑍 = (ℤ𝑀)
2 climmulf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climmulf.7 . 2 (𝜑𝐹𝐴)
4 climmulf.8 . 2 (𝜑𝐻𝑋)
5 climmulf.9 . 2 (𝜑𝐺𝐵)
6 climmulf.1 . . . . 5 𝑘𝜑
7 nfcv 2977 . . . . . 6 𝑘𝑗
87nfel1 2994 . . . . 5 𝑘 𝑗𝑍
96, 8nfan 1896 . . . 4 𝑘(𝜑𝑗𝑍)
10 climmulf.2 . . . . . 6 𝑘𝐹
1110, 7nffv 6679 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2994 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
139, 12nfim 1893 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1w 2895 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 630 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6669 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2897 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 347 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climmulf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvarfv 2238 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climmulf.3 . . . . . 6 𝑘𝐺
2221, 7nffv 6679 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2994 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
249, 23nfim 1893 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6669 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2897 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 347 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climmulf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvarfv 2238 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climmulf.4 . . . . . 6 𝑘𝐻
3130, 7nffv 6679 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2977 . . . . . 6 𝑘 ·
3311, 32, 22nfov 7185 . . . . 5 𝑘((𝐹𝑗) · (𝐺𝑗))
3431, 33nfeq 2991 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))
359, 34nfim 1893 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
36 fveq2 6669 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 7173 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐹𝑗) · (𝐺𝑗)))
3836, 37eqeq12d 2837 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))))
3915, 38imbi12d 347 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))))
40 climmulf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4135, 39, 40chvarfv 2238 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climmul 14988 1 (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534   · cmul 10541  cz 11980  cuz 12242  cli 14840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844
This theorem is referenced by:  climneg  41889  climdivf  41891  stirlinglem15  42372  etransclem48  42566
  Copyright terms: Public domain W3C validator