Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Visualization version   GIF version

Theorem climrec 41877
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1 𝑍 = (ℤ𝑀)
climrec.2 (𝜑𝑀 ∈ ℤ)
climrec.3 (𝜑𝐺𝐴)
climrec.4 (𝜑𝐴 ≠ 0)
climrec.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrec.6 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrec.7 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrec (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrec
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3 𝑍 = (ℤ𝑀)
2 climrec.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climrec.3 . . . . 5 (𝜑𝐺𝐴)
4 climcl 14850 . . . . 5 (𝐺𝐴𝐴 ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
6 climrec.4 . . . . . 6 (𝜑𝐴 ≠ 0)
76neneqd 3021 . . . . 5 (𝜑 → ¬ 𝐴 = 0)
8 c0ex 10629 . . . . . 6 0 ∈ V
98elsn2 4597 . . . . 5 (𝐴 ∈ {0} ↔ 𝐴 = 0)
107, 9sylnibr 331 . . . 4 (𝜑 → ¬ 𝐴 ∈ {0})
115, 10eldifd 3946 . . 3 (𝜑𝐴 ∈ (ℂ ∖ {0}))
12 eqidd 2822 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
13 simpr 487 . . . . . 6 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
1413oveq2d 7166 . . . . 5 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
15 simpr 487 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ (ℂ ∖ {0}))
1615eldifad 3947 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ ℂ)
17 eldifsni 4715 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
1817adantl 484 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ≠ 0)
1916, 18reccld 11403 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (1 / 𝑧) ∈ ℂ)
2012, 14, 15, 19fvmptd 6769 . . . 4 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
2120, 19eqeltrd 2913 . . 3 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) ∈ ℂ)
22 climrec.7 . . 3 (𝜑𝐻𝑊)
23 eqid 2821 . . . . . 6 (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2)) = (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2))
2423reccn2 14947 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
2511, 24sylan 582 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
26 eqidd 2822 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
27 simpr 487 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
2827oveq2d 7166 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
29 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ (ℂ ∖ {0}))
30 eldifi 4102 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
3130, 17reccld 11403 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
3226, 28, 29, 31fvmptd 6769 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
3332ad2antlr 725 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
34 eqidd 2822 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
35 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝐴) → 𝑤 = 𝐴)
3635oveq2d 7166 . . . . . . . . . . . 12 ((𝜑𝑤 = 𝐴) → (1 / 𝑤) = (1 / 𝐴))
375, 6reccld 11403 . . . . . . . . . . . 12 (𝜑 → (1 / 𝐴) ∈ ℂ)
3834, 36, 11, 37fvmptd 6769 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
3938ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
4033, 39oveq12d 7168 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴)) = ((1 / 𝑧) − (1 / 𝐴)))
4140fveq2d 6668 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4229ad2antlr 725 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → 𝑧 ∈ (ℂ ∖ {0}))
43 simpr 487 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(𝑧𝐴)) < 𝑦)
44 simpllr 774 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)))
4542, 43, 44mp2d 49 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)
4641, 45eqbrtrd 5080 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)
4746exp41 437 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))))
4847ralimdv2 3176 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
4948reximdv 3273 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
5025, 49mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))
51 climrec.5 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
52 climrec.6 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
53 eqidd 2822 . . . . 5 ((𝜑𝑘𝑍) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
54 oveq2 7158 . . . . . 6 (𝑤 = (𝐺𝑘) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5554adantl 484 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑤 = (𝐺𝑘)) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5651eldifad 3947 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
57 eldifsni 4715 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
5851, 57syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
5956, 58reccld 11403 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
6053, 55, 51, 59fvmptd 6769 . . . 4 ((𝜑𝑘𝑍) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)) = (1 / (𝐺𝑘)))
6152, 60eqtr4d 2859 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)))
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 14942 . 2 (𝜑𝐻 ⇝ ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))
6362, 38breqtrd 5084 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  cz 11975  cuz 12237  +crp 12383  abscabs 14587  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839
This theorem is referenced by:  climrecf  41883  wallispi  42349
  Copyright terms: Public domain W3C validator