Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreeq Structured version   Visualization version   GIF version

Theorem climreeq 40163
 Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
Hypotheses
Ref Expression
climreeq.1 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
climreeq.2 𝑍 = (ℤ𝑀)
climreeq.3 (𝜑𝑀 ∈ ℤ)
climreeq.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climreeq (𝜑 → (𝐹𝑅𝐴𝐹𝐴))

Proof of Theorem climreeq
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 climreeq.3 . . . 4 (𝜑𝑀 ∈ ℤ)
2 climreeq.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
3 ax-resscn 10031 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
52, 4fssd 6095 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
6 eqid 2651 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7 climreeq.2 . . . . 5 𝑍 = (ℤ𝑀)
86, 7lmclimf 23148 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
91, 5, 8syl2anc 694 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
106tgioo2 22653 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11 reex 10065 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → ℝ ∈ V)
136cnfldtop 22634 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1413a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top)
15 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
161adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
172adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
1810, 7, 12, 14, 15, 16, 17lmss 21150 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
1918pm5.32da 674 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
20 simpr 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)
211adantr 480 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ)
229biimpa 500 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹𝐴)
232ffvelrnda 6399 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
2423adantlr 751 . . . . . . . 8 (((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
257, 21, 22, 24climrecl 14358 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ)
2625ex 449 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐴 ∈ ℝ))
2726ancrd 576 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)))
2820, 27impbid2 216 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))
29 simpr 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
30 retopon 22614 . . . . . . . . 9 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3130a1i 11 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
32 simpr 476 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
33 lmcl 21149 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3431, 32, 33syl2anc 694 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3534ex 449 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐴 ∈ ℝ))
3635ancrd 576 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
3729, 36impbid2 216 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
3819, 28, 373bitr3d 298 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
399, 38bitr3d 270 . 2 (𝜑 → (𝐹𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
40 climreeq.1 . . 3 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
4140breqi 4691 . 2 (𝐹𝑅𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
4239, 41syl6rbbr 279 1 (𝜑 → (𝐹𝑅𝐴𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685  ran crn 5144  ⟶wf 5922  ‘cfv 5926  ℂcc 9972  ℝcr 9973  ℤcz 11415  ℤ≥cuz 11725  (,)cioo 12213   ⇝ cli 14259  TopOpenctopn 16129  topGenctg 16145  ℂfldccnfld 19794  Topctop 20746  TopOnctopon 20763  ⇝𝑡clm 21078 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-fz 12365  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-lm 21081  df-xms 22172  df-ms 22173 This theorem is referenced by:  xlimclim  40368  stirlingr  40625
 Copyright terms: Public domain W3C validator