MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climres Structured version   Visualization version   GIF version

Theorem climres 14935
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climres ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climres
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 (ℤ𝑀) = (ℤ𝑀)
2 resexg 5901 . . 3 (𝐹𝑉 → (𝐹 ↾ (ℤ𝑀)) ∈ V)
32adantl 484 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ↾ (ℤ𝑀)) ∈ V)
4 simpr 487 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
5 simpl 485 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
6 fvres 6692 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
76adantl 484 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
81, 3, 4, 5, 7climeq 14927 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 ↾ (ℤ𝑀)) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3497   class class class wbr 5069  cres 5560  cfv 6358  cz 11984  cuz 12246  cli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-pre-lttri 10614  ax-pre-lttrn 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-neg 10876  df-z 11985  df-uz 12247  df-clim 14848
This theorem is referenced by:  sumrb  15073  divcnvshft  15213  prodrblem2  15288  iscmet3lem3  23896  leibpilem2  25522  lgamcvg2  25635  divcnvlin  32968  radcnvrat  40652  hashnzfzclim  40660  climresmpt  41946  xlimclim2lem  42126  climxlim2  42133  climresd  42136
  Copyright terms: Public domain W3C validator