MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climserle Structured version   Visualization version   GIF version

Theorem climserle 15013
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climserle.2 (𝜑𝑁𝑍)
climserle.3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
climserle.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climserle.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climserle (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climserle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 climserle.2 . 2 (𝜑𝑁𝑍)
3 climserle.3 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
42, 1eleqtrdi 2923 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12242 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
7 climserle.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
81, 6, 7serfre 13393 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
98ffvelrnda 6845 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
101peano2uzs 12296 . . . . 5 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
11 fveq2 6664 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
1211breq2d 5070 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
1312imbi2d 343 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))))
14 climserle.5 . . . . . . . 8 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
1514expcom 416 . . . . . . 7 (𝑘𝑍 → (𝜑 → 0 ≤ (𝐹𝑘)))
1613, 15vtoclga 3573 . . . . . 6 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))
1716impcom 410 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1810, 17sylan2 594 . . . 4 ((𝜑𝑗𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1911eleq1d 2897 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
2019imbi2d 343 . . . . . . . 8 (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)))
217expcom 416 . . . . . . . 8 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
2220, 21vtoclga 3573 . . . . . . 7 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))
2322impcom 410 . . . . . 6 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
2410, 23sylan2 594 . . . . 5 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
259, 24addge01d 11222 . . . 4 ((𝜑𝑗𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))))
2618, 25mpbid 234 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
27 simpr 487 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 1eleqtrdi 2923 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 seqp1 13378 . . . 4 (𝑗 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3028, 29syl 17 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3126, 30breqtrrd 5086 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
321, 2, 3, 9, 31climub 15012 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  cle 10670  cz 11975  cuz 12237  seqcseq 13363  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840
This theorem is referenced by:  isumrpcl  15192  ege2le3  15437  prmreclem6  16251  ioombl1lem4  24156  rge0scvg  31187
  Copyright terms: Public domain W3C validator