MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshftlem Structured version   Visualization version   GIF version

Theorem climshftlem 14234
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
climshft.1 𝐹 ∈ V
Assertion
Ref Expression
climshftlem (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))

Proof of Theorem climshftlem
Dummy variables 𝑘 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 11362 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
21ancoms 469 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
3 eluzsub 11661 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
433com12 1266 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
543expa 1262 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
6 fveq2 6150 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (𝐹𝑚) = (𝐹‘(𝑛𝑀)))
76eleq1d 2688 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
86oveq1d 6620 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
98fveq2d 6154 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → (abs‘((𝐹𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
109breq1d 4628 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → ((abs‘((𝐹𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
117, 10anbi12d 746 . . . . . . . . . 10 (𝑚 = (𝑛𝑀) → (((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1211rspcv 3296 . . . . . . . . 9 ((𝑛𝑀) ∈ (ℤ𝑘) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
135, 12syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
14 zcn 11327 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
15 eluzelcn 11643 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ)
16 climshft.1 . . . . . . . . . . . . 13 𝐹 ∈ V
1716shftval 13743 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛𝑀)))
1817eleq1d 2688 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
1917oveq1d 6620 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
2019fveq2d 6154 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
2120breq1d 4628 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
2218, 21anbi12d 746 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2314, 15, 22syl2an 494 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2423adantlr 750 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2513, 24sylibrd 249 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2625ralrimdva 2968 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
27 fveq2 6150 . . . . . . . 8 (𝑚 = (𝑘 + 𝑀) → (ℤ𝑚) = (ℤ‘(𝑘 + 𝑀)))
2827raleqdv 3138 . . . . . . 7 (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
2928rspcev 3300 . . . . . 6 (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))
302, 26, 29syl6an 567 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3130rexlimdva 3029 . . . 4 (𝑀 ∈ ℤ → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3231ralimdv 2962 . . 3 (𝑀 ∈ ℤ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3332anim2d 588 . 2 (𝑀 ∈ ℤ → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
3416a1i 11 . . 3 (𝑀 ∈ ℤ → 𝐹 ∈ V)
35 eqidd 2627 . . 3 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝐹𝑚))
3634, 35clim 14154 . 2 (𝑀 ∈ ℤ → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥))))
37 ovex 6633 . . . 4 (𝐹 shift 𝑀) ∈ V
3837a1i 11 . . 3 (𝑀 ∈ ℤ → (𝐹 shift 𝑀) ∈ V)
39 eqidd 2627 . . 3 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛))
4038, 39clim 14154 . 2 (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
4133, 36, 403imtr4d 283 1 (𝑀 ∈ ℤ → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  Vcvv 3191   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879   + caddc 9884   < clt 10019  cmin 10211  cz 11322  cuz 11631  +crp 11776   shift cshi 13735  abscabs 13903  cli 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-shft 13736  df-clim 14148
This theorem is referenced by:  climshft  14236
  Copyright terms: Public domain W3C validator