MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsqz2 Structured version   Visualization version   GIF version

Theorem climsqz2 15001
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climsqz.5 (𝜑𝐺𝑊)
climsqz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climsqz.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
climsqz2.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
climsqz2.9 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
Assertion
Ref Expression
climsqz2 (𝜑𝐺𝐴)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsqz2
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5 𝑍 = (ℤ𝑀)
2 climadd.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 simpr 487 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 eqidd 2825 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
6 climadd.4 . . . . . 6 (𝜑𝐹𝐴)
76adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐹𝐴)
81, 3, 4, 5, 7climi2 14871 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
91uztrn2 12265 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 climsqz.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
11 climsqz.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 2, 6, 11climrecl 14943 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1312adantr 483 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
14 climsqz2.8 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
1510, 11, 13, 14lesub1dd 11259 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐺𝑘) − 𝐴) ≤ ((𝐹𝑘) − 𝐴))
16 climsqz2.9 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
1713, 10, 16abssubge0d 14794 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) = ((𝐺𝑘) − 𝐴))
1813, 10, 11, 16, 14letrd 10800 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
1913, 11, 18abssubge0d 14794 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = ((𝐹𝑘) − 𝐴))
2015, 17, 193brtr4d 5101 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2120adantlr 713 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2210adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2312ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐴 ∈ ℝ)
2422, 23resubcld 11071 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℝ)
2524recnd 10672 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℂ)
2625abscld 14799 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ)
2711adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2827, 23resubcld 11071 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
2928recnd 10672 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
3029abscld 14799 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
31 rpre 12400 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3231ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
33 lelttr 10734 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3426, 30, 32, 33syl3anc 1367 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3521, 34mpand 693 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
369, 35sylan2 594 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3736anassrs 470 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3837ralimdva 3180 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3938reximdva 3277 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
408, 39mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
4140ralrimiva 3185 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
42 climsqz.5 . . 3 (𝜑𝐺𝑊)
43 eqidd 2825 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
4412recnd 10672 . . 3 (𝜑𝐴 ∈ ℂ)
4510recnd 10672 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
461, 2, 42, 43, 44, 45clim2c 14865 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
4741, 46mpbird 259 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  cfv 6358  (class class class)co 7159  cr 10539   < clt 10678  cle 10679  cmin 10873  cz 11984  cuz 12246  +crp 12392  abscabs 14596  cli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849
This theorem is referenced by:  expcnv  15222  explecnv  15223  plyeq0lem  24803  leibpi  25523  emcllem4  25579  basellem6  25666  basellem9  25669  wallispilem5  42361  stirlinglem1  42366
  Copyright terms: Public domain W3C validator