Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuzcnv Structured version   Visualization version   GIF version

Theorem climuzcnv 30692
Description: Utility lemma to convert between 𝑚𝑘 and 𝑘 ∈ (ℤ𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
Assertion
Ref Expression
climuzcnv (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Distinct variable group:   𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)

Proof of Theorem climuzcnv
StepHypRef Expression
1 elnnuz 11460 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2 uztrn 11440 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
31, 2sylan2b 490 . . . . . . 7 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
4 elnnuz 11460 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
53, 4sylibr 222 . . . . . 6 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ)
65expcom 449 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑘 ∈ ℕ))
7 eluzle 11436 . . . . . 6 (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘)
87a1i 11 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘))
96, 8jcad 553 . . . 4 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
10 nnz 11138 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
11 nnz 11138 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
12 eluz2 11429 . . . . . . . 8 (𝑘 ∈ (ℤ𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘))
1312biimpri 216 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1411, 13syl3an1 1350 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1510, 14syl3an2 1351 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
16153expib 1259 . . . 4 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
179, 16impbid 200 . . 3 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
1817imbi1d 329 . 2 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑)))
19 impexp 460 . 2 (((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑)))
2018, 19syl6bb 274 1 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wcel 1938   class class class wbr 4481  cfv 5689  1c1 9690  cle 9828  cn 10773  cz 11116  cuz 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-nn 10774  df-z 11117  df-uz 11424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator