Mathbox for Paul Chapman < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuzcnv Structured version   Visualization version   GIF version

Theorem climuzcnv 31691
 Description: Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.)
Assertion
Ref Expression
climuzcnv (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
Distinct variable group:   𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)

Proof of Theorem climuzcnv
StepHypRef Expression
1 elnnuz 11762 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
2 uztrn 11742 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
31, 2sylan2b 491 . . . . . . 7 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
4 elnnuz 11762 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
53, 4sylibr 224 . . . . . 6 ((𝑘 ∈ (ℤ𝑚) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℕ)
65expcom 450 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑘 ∈ ℕ))
7 eluzle 11738 . . . . . 6 (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘)
87a1i 11 . . . . 5 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → 𝑚𝑘))
96, 8jcad 554 . . . 4 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) → (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
10 nnz 11437 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
11 nnz 11437 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
12 eluz2 11731 . . . . . . . 8 (𝑘 ∈ (ℤ𝑚) ↔ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘))
1312biimpri 218 . . . . . . 7 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1411, 13syl3an1 1399 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℤ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
1510, 14syl3an2 1400 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚))
16153expib 1287 . . . 4 (𝑚 ∈ ℕ → ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
179, 16impbid 202 . . 3 (𝑚 ∈ ℕ → (𝑘 ∈ (ℤ𝑚) ↔ (𝑘 ∈ ℕ ∧ 𝑚𝑘)))
1817imbi1d 330 . 2 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ ((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑)))
19 impexp 461 . 2 (((𝑘 ∈ ℕ ∧ 𝑚𝑘) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑)))
2018, 19syl6bb 276 1 (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚𝑘𝜑))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  1c1 9975   ≤ cle 10113  ℕcn 11058  ℤcz 11415  ℤ≥cuz 11725 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-z 11416  df-uz 11726 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator