![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climxlim2 | Structured version Visualization version GIF version |
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
climxlim2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climxlim2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climxlim2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
climxlim2.a | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Ref | Expression |
---|---|
climxlim2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climxlim2.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | eluzelz2 40125 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
3 | 2 | ad2antlr 765 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝑗 ∈ ℤ) |
4 | eqid 2760 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
5 | climxlim2.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
6 | 5 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹:𝑍⟶ℝ*) |
7 | 1 | uzssd3 40151 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆ 𝑍) |
8 | 7 | adantl 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆ 𝑍) |
9 | 6, 8 | fssresd 6232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
10 | 9 | adantr 472 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
11 | simpr 479 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) | |
12 | climxlim2.a | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
13 | 12 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ⇝ 𝐴) |
14 | 1 | fvexi 6363 | . . . . . . . . 9 ⊢ 𝑍 ∈ V |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝑍 ∈ V) |
16 | 5, 15 | fexd 39795 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | climres 14505 | . . . . . . 7 ⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
18 | 2, 16, 17 | syl2anr 496 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
19 | 13, 18 | mpbird 247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
20 | 19 | adantr 472 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗)) ⇝ 𝐴) |
21 | 3, 4, 10, 11, 20 | climxlim2lem 40574 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴) |
22 | 1, 5 | fuzxrpmcn 40557 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
23 | 22 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
24 | 2 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
25 | 23, 24 | xlimres 40550 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
26 | 25 | adantr 472 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*𝐴)) |
27 | 21, 26 | mpbird 247 | . 2 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) → 𝐹~~>*𝐴) |
28 | climxlim2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
29 | 5 | ffnd 6207 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
30 | climcl 14429 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
31 | 12, 30 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
32 | breldmg 5485 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹 ⇝ 𝐴) → 𝐹 ∈ dom ⇝ ) | |
33 | 16, 31, 12, 32 | syl3anc 1477 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
34 | 28, 1, 29, 33 | climrescn 40483 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) |
35 | 27, 34 | r19.29a 3216 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑pm cpm 8024 ℂcc 10126 ℝ*cxr 10265 ℤcz 11569 ℤ≥cuz 11879 ⇝ cli 14414 ~~>*clsxlim 40547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fi 8482 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ioc 12373 df-ico 12374 df-icc 12375 df-fz 12520 df-fl 12787 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-rest 16285 df-topn 16286 df-topgen 16306 df-ordt 16363 df-ps 17401 df-tsr 17402 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-lm 21235 df-xms 22326 df-ms 22327 df-xlim 40548 |
This theorem is referenced by: dfxlim2v 40576 meaiuninc3v 41204 |
Copyright terms: Public domain | W3C validator |