Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2 Structured version   Visualization version   GIF version

Theorem climxlim2 40575
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2.m (𝜑𝑀 ∈ ℤ)
climxlim2.z 𝑍 = (ℤ𝑀)
climxlim2.f (𝜑𝐹:𝑍⟶ℝ*)
climxlim2.a (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2 (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climxlim2.z . . . . . 6 𝑍 = (ℤ𝑀)
21eluzelz2 40125 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
32ad2antlr 765 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝑗 ∈ ℤ)
4 eqid 2760 . . . 4 (ℤ𝑗) = (ℤ𝑗)
5 climxlim2.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 472 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹:𝑍⟶ℝ*)
71uzssd3 40151 . . . . . . 7 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
87adantl 473 . . . . . 6 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
96, 8fssresd 6232 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
109adantr 472 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
11 simpr 479 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
12 climxlim2.a . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 472 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹𝐴)
141fvexi 6363 . . . . . . . . 9 𝑍 ∈ V
1514a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
165, 15fexd 39795 . . . . . . 7 (𝜑𝐹 ∈ V)
17 climres 14505 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
182, 16, 17syl2anr 496 . . . . . 6 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1913, 18mpbird 247 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
2019adantr 472 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
213, 4, 10, 11, 20climxlim2lem 40574 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗))~~>*𝐴)
221, 5fuzxrpmcn 40557 . . . . . 6 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2322adantr 472 . . . . 5 ((𝜑𝑗𝑍) → 𝐹 ∈ (ℝ*pm ℂ))
242adantl 473 . . . . 5 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2523, 24xlimres 40550 . . . 4 ((𝜑𝑗𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2625adantr 472 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2721, 26mpbird 247 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝐹~~>*𝐴)
28 climxlim2.m . . 3 (𝜑𝑀 ∈ ℤ)
295ffnd 6207 . . 3 (𝜑𝐹 Fn 𝑍)
30 climcl 14429 . . . . 5 (𝐹𝐴𝐴 ∈ ℂ)
3112, 30syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
32 breldmg 5485 . . . 4 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹𝐴) → 𝐹 ∈ dom ⇝ )
3316, 31, 12, 32syl3anc 1477 . . 3 (𝜑𝐹 ∈ dom ⇝ )
3428, 1, 29, 33climrescn 40483 . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
3527, 34r19.29a 3216 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715   class class class wbr 4804  dom cdm 5266  cres 5268  wf 6045  cfv 6049  (class class class)co 6813  pm cpm 8024  cc 10126  *cxr 10265  cz 11569  cuz 11879  cli 14414  ~~>*clsxlim 40547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fl 12787  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-rest 16285  df-topn 16286  df-topgen 16306  df-ordt 16363  df-ps 17401  df-tsr 17402  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-lm 21235  df-xms 22326  df-ms 22327  df-xlim 40548
This theorem is referenced by:  dfxlim2v  40576  meaiuninc3v  41204
  Copyright terms: Public domain W3C validator