MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsca Structured version   Visualization version   GIF version

Theorem clmsca 23663
Description: The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmsca (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))

Proof of Theorem clmsca
StepHypRef Expression
1 isclm.f . . 3 𝐹 = (Scalar‘𝑊)
2 isclm.k . . 3 𝐾 = (Base‘𝐹)
31, 2isclm 23662 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
43simp2bi 1142 1 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  Scalarcsca 16562  SubRingcsubrg 19525  LModclmod 19628  fldccnfld 20539  ℂModcclm 23660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153  df-clm 23661
This theorem is referenced by:  clm0  23670  clm1  23671  clmadd  23672  clmmul  23673  clmcj  23674  clmsub  23678  clmneg  23679  clmabs  23681  cvsdiv  23730  isncvsngp  23747
  Copyright terms: Public domain W3C validator