MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsdi Structured version   Visualization version   GIF version

Theorem clmvsdi 23699
Description: Distributive law for scalar product (left-distributivity). (lmodvsdi 19660 analog.) (Contributed by NM, 3-Nov-2006.) (Revised by AV, 28-Sep-2021.)
Hypotheses
Ref Expression
clmvscl.v 𝑉 = (Base‘𝑊)
clmvscl.f 𝐹 = (Scalar‘𝑊)
clmvscl.s · = ( ·𝑠𝑊)
clmvscl.k 𝐾 = (Base‘𝐹)
clmvsdir.a + = (+g𝑊)
Assertion
Ref Expression
clmvsdi ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))

Proof of Theorem clmvsdi
StepHypRef Expression
1 clmlmod 23674 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvscl.v . . 3 𝑉 = (Base‘𝑊)
3 clmvsdir.a . . 3 + = (+g𝑊)
4 clmvscl.f . . 3 𝐹 = (Scalar‘𝑊)
5 clmvscl.s . . 3 · = ( ·𝑠𝑊)
6 clmvscl.k . . 3 𝐾 = (Base‘𝐹)
72, 3, 4, 5, 6lmodvsdi 19660 . 2 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
81, 7sylan 582 1 ((𝑊 ∈ ℂMod ∧ (𝐴𝐾𝑋𝑉𝑌𝑉)) → (𝐴 · (𝑋 + 𝑌)) = ((𝐴 · 𝑋) + (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  Scalarcsca 16571   ·𝑠 cvsca 16572  LModclmod 19637  ℂModcclm 23669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-nul 5213
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-ov 7162  df-lmod 19639  df-clm 23670
This theorem is referenced by:  clmnegsubdi2  23712  clmsub4  23713  ncvspi  23763
  Copyright terms: Public domain W3C validator