MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsfval Structured version   Visualization version   GIF version

Theorem clsfval 20742
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
clsfval (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem clsfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 20633 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4812 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 6441 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
6 unieq 4412 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2673 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4137 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 6150 . . . . . 6 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
10 rabeq 3179 . . . . . 6 ((Clsd‘𝑗) = (Clsd‘𝐽) → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
119, 10syl 17 . . . . 5 (𝑗 = 𝐽 → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
1211inteqd 4447 . . . 4 (𝑗 = 𝐽 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
138, 12mpteq12dv 4695 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
14 df-cls 20738 . . 3 cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
1513, 14fvmptg 6239 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V) → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
165, 15mpdan 701 1 (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  wss 3556  𝒫 cpw 4132   cuni 4404   cint 4442  cmpt 4675  cfv 5849  Topctop 20620  Clsdccld 20733  clsccl 20735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-top 20621  df-cls 20738
This theorem is referenced by:  clsval  20754  clsf  20765  mrccls  20796
  Copyright terms: Public domain W3C validator