Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   GIF version

Theorem clsk1indlem2 40382
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem2 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑠 = {∅} → 𝑠 = {∅})
2 snsspr1 4739 . . . . . . . . . 10 {∅} ⊆ {∅, 1o}
31, 2eqsstrdi 4019 . . . . . . . . 9 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1o})
43ancli 551 . . . . . . . 8 (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}))
54con3i 157 . . . . . . 7 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → ¬ 𝑠 = {∅})
6 ssid 3987 . . . . . . 7 𝑠𝑠
75, 6jctir 523 . . . . . 6 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
87orri 858 . . . . 5 ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
98a1i 11 . . . 4 (𝑠 ∈ 𝒫 3o → ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
10 sseq2 3991 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅, 1o} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ {∅, 1o}))
11 sseq2 3991 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠𝑠))
1210, 11elimif 4501 . . . 4 (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
139, 12sylibr 236 . . 3 (𝑠 ∈ 𝒫 3o𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠))
14 eqeq1 2823 . . . . 5 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
15 id 22 . . . . 5 (𝑟 = 𝑠𝑟 = 𝑠)
1614, 15ifbieq2d 4490 . . . 4 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
17 clsk1indlem.k . . . 4 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
18 prex 5323 . . . . 5 {∅, 1o} ∈ V
19 vex 3496 . . . . 5 𝑠 ∈ V
2018, 19ifex 4513 . . . 4 if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ V
2116, 17, 20fvmpt 6761 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
2213, 21sseqtrrd 4006 . 2 (𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠))
2322rgen 3146 1 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843   = wceq 1530  wcel 2107  wral 3136  wss 3934  c0 4289  ifcif 4465  𝒫 cpw 4537  {csn 4559  {cpr 4561  cmpt 5137  cfv 6348  1oc1o 8087  3oc3o 8089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356
This theorem is referenced by:  clsk1independent  40386
  Copyright terms: Public domain W3C validator