Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk3nimkb Structured version   Visualization version   GIF version

Theorem clsk3nimkb 37820
Description: If the base set is not empty, axiom K3 does not imply KB. An concrete example with a pseudo-closure function of 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) is given. (Contributed by RP, 16-Jun-2021.)
Assertion
Ref Expression
clsk3nimkb ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏))
Distinct variable group:   𝑘,𝑏,𝑡,𝑠

Proof of Theorem clsk3nimkb
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 7512 . . . . . 6 1𝑜 ∈ On
21elexi 3199 . . . . 5 1𝑜 ∈ V
3 1n0 7520 . . . . . 6 1𝑜 ≠ ∅
4 nelsn 4183 . . . . . 6 (1𝑜 ≠ ∅ → ¬ 1𝑜 ∈ {∅})
53, 4ax-mp 5 . . . . 5 ¬ 1𝑜 ∈ {∅}
6 eldif 3565 . . . . . 6 (1𝑜 ∈ (V ∖ {∅}) ↔ (1𝑜 ∈ V ∧ ¬ 1𝑜 ∈ {∅}))
7 ne0i 3897 . . . . . 6 (1𝑜 ∈ (V ∖ {∅}) → (V ∖ {∅}) ≠ ∅)
86, 7sylbir 225 . . . . 5 ((1𝑜 ∈ V ∧ ¬ 1𝑜 ∈ {∅}) → (V ∖ {∅}) ≠ ∅)
92, 5, 8mp2an 707 . . . 4 (V ∖ {∅}) ≠ ∅
10 r19.2zb 4033 . . . 4 ((V ∖ {∅}) ≠ ∅ ↔ (∀𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) → ∃𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏))))
119, 10mpbi 220 . . 3 (∀𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) → ∃𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
12 rexex 2996 . . 3 (∃𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) → ∃𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
13 rexanali 2992 . . . . 5 (∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) ↔ ¬ ∀𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
1413exbii 1771 . . . 4 (∃𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) ↔ ∃𝑏 ¬ ∀𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
15 exnal 1751 . . . 4 (∃𝑏 ¬ ∀𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
1614, 15sylbb 209 . . 3 (∃𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
1711, 12, 163syl 18 . 2 (∀𝑏 ∈ (V ∖ {∅})∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
18 id 22 . . . . . . 7 (𝑏 ∈ (V ∖ {∅}) → 𝑏 ∈ (V ∖ {∅}))
19 difssd 3716 . . . . . . 7 (𝑏 ∈ (V ∖ {∅}) → (𝑏𝑥) ⊆ 𝑏)
2018, 19sselpwd 4767 . . . . . 6 (𝑏 ∈ (V ∖ {∅}) → (𝑏𝑥) ∈ 𝒫 𝑏)
2120adantr 481 . . . . 5 ((𝑏 ∈ (V ∖ {∅}) ∧ 𝑥 ∈ 𝒫 𝑏) → (𝑏𝑥) ∈ 𝒫 𝑏)
22 eqid 2621 . . . . 5 (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))
2321, 22fmptd 6340 . . . 4 (𝑏 ∈ (V ∖ {∅}) → (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)):𝒫 𝑏⟶𝒫 𝑏)
24 pwexg 4810 . . . . 5 (𝑏 ∈ (V ∖ {∅}) → 𝒫 𝑏 ∈ V)
2524, 24elmapd 7816 . . . 4 (𝑏 ∈ (V ∖ {∅}) → ((𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ↔ (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)):𝒫 𝑏⟶𝒫 𝑏))
2623, 25mpbird 247 . . 3 (𝑏 ∈ (V ∖ {∅}) → (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) ∈ (𝒫 𝑏𝑚 𝒫 𝑏))
27 simpllr 798 . . . . . . . . 9 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)))
28 difeq2 3700 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑏𝑥) = (𝑏𝑧))
2928cbvmptv 4710 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏𝑧))
3027, 29syl6eq 2671 . . . . . . . 8 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑘 = (𝑧 ∈ 𝒫 𝑏 ↦ (𝑏𝑧)))
31 difeq2 3700 . . . . . . . . 9 (𝑧 = (𝑠𝑡) → (𝑏𝑧) = (𝑏 ∖ (𝑠𝑡)))
3231adantl 482 . . . . . . . 8 (((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = (𝑠𝑡)) → (𝑏𝑧) = (𝑏 ∖ (𝑠𝑡)))
33 simplll 797 . . . . . . . . 9 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑏 ∈ (V ∖ {∅}))
34 simplr 791 . . . . . . . . . . 11 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑠 ∈ 𝒫 𝑏)
3534elpwid 4141 . . . . . . . . . 10 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑠𝑏)
36 simpr 477 . . . . . . . . . . 11 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑡 ∈ 𝒫 𝑏)
3736elpwid 4141 . . . . . . . . . 10 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → 𝑡𝑏)
3835, 37unssd 3767 . . . . . . . . 9 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑠𝑡) ⊆ 𝑏)
3933, 38sselpwd 4767 . . . . . . . 8 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑠𝑡) ∈ 𝒫 𝑏)
40 vex 3189 . . . . . . . . . 10 𝑏 ∈ V
4140difexi 4769 . . . . . . . . 9 (𝑏 ∖ (𝑠𝑡)) ∈ V
4241a1i 11 . . . . . . . 8 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏 ∖ (𝑠𝑡)) ∈ V)
4330, 32, 39, 42fvmptd 6245 . . . . . . 7 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘‘(𝑠𝑡)) = (𝑏 ∖ (𝑠𝑡)))
44 difeq2 3700 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑏𝑧) = (𝑏𝑠))
4544adantl 482 . . . . . . . . . 10 (((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑠) → (𝑏𝑧) = (𝑏𝑠))
4640difexi 4769 . . . . . . . . . . 11 (𝑏𝑠) ∈ V
4746a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏𝑠) ∈ V)
4830, 45, 34, 47fvmptd 6245 . . . . . . . . 9 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘𝑠) = (𝑏𝑠))
49 difeq2 3700 . . . . . . . . . . 11 (𝑧 = 𝑡 → (𝑏𝑧) = (𝑏𝑡))
5049adantl 482 . . . . . . . . . 10 (((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) ∧ 𝑧 = 𝑡) → (𝑏𝑧) = (𝑏𝑡))
5140difexi 4769 . . . . . . . . . . 11 (𝑏𝑡) ∈ V
5251a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑏𝑡) ∈ V)
5330, 50, 36, 52fvmptd 6245 . . . . . . . . 9 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (𝑘𝑡) = (𝑏𝑡))
5448, 53uneq12d 3746 . . . . . . . 8 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘𝑠) ∪ (𝑘𝑡)) = ((𝑏𝑠) ∪ (𝑏𝑡)))
55 difindi 3857 . . . . . . . 8 (𝑏 ∖ (𝑠𝑡)) = ((𝑏𝑠) ∪ (𝑏𝑡))
5654, 55syl6eqr 2673 . . . . . . 7 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (𝑏 ∖ (𝑠𝑡)))
5743, 56sseq12d 3613 . . . . . 6 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ (𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡))))
5857ralbidva 2979 . . . . 5 (((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡))))
5958ralbidva 2979 . . . 4 ((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡))))
6056eqeq1d 2623 . . . . . . . 8 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏 ↔ (𝑏 ∖ (𝑠𝑡)) = 𝑏))
6160imbi2d 330 . . . . . . 7 ((((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) ∧ 𝑡 ∈ 𝒫 𝑏) → (((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏) ↔ ((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏)))
6261ralbidva 2979 . . . . . 6 (((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) ∧ 𝑠 ∈ 𝒫 𝑏) → (∀𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏) ↔ ∀𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏)))
6362ralbidva 2979 . . . . 5 ((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏) ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏)))
6463notbid 308 . . . 4 ((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) → (¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏) ↔ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏)))
6559, 64anbi12d 746 . . 3 ((𝑏 ∈ (V ∖ {∅}) ∧ 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥))) → ((∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)) ↔ (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))))
66 pwidg 4144 . . . . . 6 (𝑏 ∈ (V ∖ {∅}) → 𝑏 ∈ 𝒫 𝑏)
67 ssid 3603 . . . . . . 7 𝑏𝑏
6867a1i 11 . . . . . 6 (𝑏 ∈ (V ∖ {∅}) → 𝑏𝑏)
69 eldifsni 4289 . . . . . . 7 (𝑏 ∈ (V ∖ {∅}) → 𝑏 ≠ ∅)
7069neneqd 2795 . . . . . 6 (𝑏 ∈ (V ∖ {∅}) → ¬ 𝑏 = ∅)
71 uneq1 3738 . . . . . . . . . 10 (𝑠 = 𝑏 → (𝑠𝑡) = (𝑏𝑡))
7271eqeq1d 2623 . . . . . . . . 9 (𝑠 = 𝑏 → ((𝑠𝑡) = 𝑏 ↔ (𝑏𝑡) = 𝑏))
73 ssequn2 3764 . . . . . . . . 9 (𝑡𝑏 ↔ (𝑏𝑡) = 𝑏)
7472, 73syl6bbr 278 . . . . . . . 8 (𝑠 = 𝑏 → ((𝑠𝑡) = 𝑏𝑡𝑏))
75 ineq1 3785 . . . . . . . . . . 11 (𝑠 = 𝑏 → (𝑠𝑡) = (𝑏𝑡))
7675difeq2d 3706 . . . . . . . . . 10 (𝑠 = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = (𝑏 ∖ (𝑏𝑡)))
7776eqeq1d 2623 . . . . . . . . 9 (𝑠 = 𝑏 → ((𝑏 ∖ (𝑠𝑡)) = 𝑏 ↔ (𝑏 ∖ (𝑏𝑡)) = 𝑏))
7877notbid 308 . . . . . . . 8 (𝑠 = 𝑏 → (¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏 ↔ ¬ (𝑏 ∖ (𝑏𝑡)) = 𝑏))
7974, 78anbi12d 746 . . . . . . 7 (𝑠 = 𝑏 → (((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏) ↔ (𝑡𝑏 ∧ ¬ (𝑏 ∖ (𝑏𝑡)) = 𝑏)))
80 sseq1 3605 . . . . . . . 8 (𝑡 = 𝑏 → (𝑡𝑏𝑏𝑏))
81 ineq2 3786 . . . . . . . . . . . . . 14 (𝑡 = 𝑏 → (𝑏𝑡) = (𝑏𝑏))
82 inidm 3800 . . . . . . . . . . . . . 14 (𝑏𝑏) = 𝑏
8381, 82syl6eq 2671 . . . . . . . . . . . . 13 (𝑡 = 𝑏 → (𝑏𝑡) = 𝑏)
8483difeq2d 3706 . . . . . . . . . . . 12 (𝑡 = 𝑏 → (𝑏 ∖ (𝑏𝑡)) = (𝑏𝑏))
85 difid 3922 . . . . . . . . . . . 12 (𝑏𝑏) = ∅
8684, 85syl6eq 2671 . . . . . . . . . . 11 (𝑡 = 𝑏 → (𝑏 ∖ (𝑏𝑡)) = ∅)
8786eqeq1d 2623 . . . . . . . . . 10 (𝑡 = 𝑏 → ((𝑏 ∖ (𝑏𝑡)) = 𝑏 ↔ ∅ = 𝑏))
88 eqcom 2628 . . . . . . . . . 10 (∅ = 𝑏𝑏 = ∅)
8987, 88syl6bb 276 . . . . . . . . 9 (𝑡 = 𝑏 → ((𝑏 ∖ (𝑏𝑡)) = 𝑏𝑏 = ∅))
9089notbid 308 . . . . . . . 8 (𝑡 = 𝑏 → (¬ (𝑏 ∖ (𝑏𝑡)) = 𝑏 ↔ ¬ 𝑏 = ∅))
9180, 90anbi12d 746 . . . . . . 7 (𝑡 = 𝑏 → ((𝑡𝑏 ∧ ¬ (𝑏 ∖ (𝑏𝑡)) = 𝑏) ↔ (𝑏𝑏 ∧ ¬ 𝑏 = ∅)))
9279, 91rspc2ev 3308 . . . . . 6 ((𝑏 ∈ 𝒫 𝑏𝑏 ∈ 𝒫 𝑏 ∧ (𝑏𝑏 ∧ ¬ 𝑏 = ∅)) → ∃𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏))
9366, 66, 68, 70, 92syl112anc 1327 . . . . 5 (𝑏 ∈ (V ∖ {∅}) → ∃𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏))
94 rexanali 2992 . . . . . . 7 (∃𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏) ↔ ¬ ∀𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))
9594rexbii 3034 . . . . . 6 (∃𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏) ↔ ∃𝑠 ∈ 𝒫 𝑏 ¬ ∀𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))
96 rexnal 2989 . . . . . 6 (∃𝑠 ∈ 𝒫 𝑏 ¬ ∀𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏) ↔ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))
9795, 96sylbb 209 . . . . 5 (∃𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 ∧ ¬ (𝑏 ∖ (𝑠𝑡)) = 𝑏) → ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))
9893, 97syl 17 . . . 4 (𝑏 ∈ (V ∖ {∅}) → ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏))
99 inss1 3811 . . . . . . 7 (𝑠𝑡) ⊆ 𝑠
100 ssun1 3754 . . . . . . 7 𝑠 ⊆ (𝑠𝑡)
10199, 100sstri 3592 . . . . . 6 (𝑠𝑡) ⊆ (𝑠𝑡)
102 sscon 3722 . . . . . 6 ((𝑠𝑡) ⊆ (𝑠𝑡) → (𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡)))
103101, 102ax-mp 5 . . . . 5 (𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡))
104103rgen2w 2920 . . . 4 𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡))
10598, 104jctil 559 . . 3 (𝑏 ∈ (V ∖ {∅}) → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑏 ∖ (𝑠𝑡)) ⊆ (𝑏 ∖ (𝑠𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → (𝑏 ∖ (𝑠𝑡)) = 𝑏)))
10626, 65, 105rspcedvd 3302 . 2 (𝑏 ∈ (V ∖ {∅}) → ∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ¬ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏)))
10717, 106mprg 2921 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  cun 3553  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  cmpt 4673  Oncon0 5682  wf 5843  cfv 5847  (class class class)co 6604  1𝑜c1o 7498  𝑚 cmap 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1o 7505  df-map 7804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator