MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   GIF version

Theorem clsndisj 21686
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsndisj (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem clsndisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
2 simp2 1133 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
3 clscld.1 . . . . . 6 𝑋 = 𝐽
43clsss3 21670 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
54sseld 3969 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
653impia 1113 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
7 simp3 1134 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
83elcls 21684 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
98biimpa 479 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
101, 2, 6, 7, 9syl31anc 1369 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
11 eleq2 2904 . . . . 5 (𝑥 = 𝑈 → (𝑃𝑥𝑃𝑈))
12 ineq1 4184 . . . . . 6 (𝑥 = 𝑈 → (𝑥𝑆) = (𝑈𝑆))
1312neeq1d 3078 . . . . 5 (𝑥 = 𝑈 → ((𝑥𝑆) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1411, 13imbi12d 347 . . . 4 (𝑥 = 𝑈 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1514rspccv 3623 . . 3 (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑈𝐽 → (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1615imp32 421 . 2 ((∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
1710, 16sylan 582 1 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  cin 3938  wss 3939  c0 4294   cuni 4841  cfv 6358  Topctop 21504  clsccl 21629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-top 21505  df-cld 21630  df-ntr 21631  df-cls 21632
This theorem is referenced by:  neindisj  21728  clsconn  22041  txcls  22215  ptclsg  22226  flimsncls  22597  hauspwpwf1  22598  met2ndci  23135  metdseq0  23465  heibor1lem  35091
  Copyright terms: Public domain W3C validator